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Post-Newtonian celestial mechanics in scalar-tensor cosmology
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Applying the recently developed dynamical perturbation formalism on cosmological background to
scalar-tensor theory, we provide a solid theoretical basis and a rigorous justification for phenomenological
models of orbital dynamics that are currently used to interpret experimental measurements of the time-
dependent gravitational constant. We derive the field equations for the scalar-tensor perturbations and study
their gauge freedom associated with the cosmological expansion. We find a new gauge eliminating a
prohibitive number of gauge modes in the field equations and significantly simplifying post-Newtonian
equations of motion for localized astronomical systems in the universe with a time-dependent gravitational
constant. We identify several new post-Newtonian terms and calculate their effect on secular cosmological

evolution of the osculating orbital elements.
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I. INTRODUCTION

Alternative theories of gravity—the competitors to
Einstein’s general theory of relativity—have been the
subject of numerous investigations for almost a hundred
years. One such theory is the scalar-tensor theory [1-3], an
outgrowth of theories by Jordan [4] and Brans and Dicke
[5], in which, in addition to the metric tensor, the
gravitational field is described by the fundamental scalar
field, ¢. This so-called Brans-Dicke (BD) field has a
broader meaning than the scalar field of standard general
relativity, where it is present only in the stress-energy tensor
and generates curvature via Einstein’s field equations.
In scalar-tensor theory, apart from having its own stress-
energy tensor, the BD field appears explicitly in the
Lagrangian through direct coupling to the curvature scalar,
which makes Newton’s gravitational constant variable,
G x 1/¢, and gives rise to additional terms in Einstein’s
field equations, presumably, with important observational
consequences.

A typical approach to deriving such consequences is
to assume that the cosmological evolution of the scalar
field affects the value of the gravitational constant,
making it time dependent, much as in the earlier
proposals by Dirac [6]. One then postulates a linear
time dependence,

G(1) = Gy[l + (Go/Go)(t — 1), (1)

with G, representing the value of G at reference epoch,
say, f, = J2000 (which we set to zero, for convenience),
and uses it in the equation of motion for the gravita-
tional probe moving in a spherically symmetric gravi-
tational field of a pointlike mass M [7,8],
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G(t)Mr
(r)3 + FNewtonian + Frelativistica (2)

where the first term on the right-hand side of (2)
represents what is known as the Gyldén-Meshcherskii
problem [9,10], the term Fyewionian includes additional
Newtonian corrections, such as the influence of the
other planets, and F .visic 1ncludes the relativistic
terms present in the Einstein-Infeld-Hoffman equations
[11]. The so-called linear trend, GO/GO, is then esti-
mated from the astronomical observations. The Lunar
Laser Ranging experiment based on the 44 years of data
[12] and the Mars Reconnaissance Orbiter experiment
[13] give the most stringent upper limits on the
variability of G, Gy/Gy = (1.4 1.5) x 1013 yr~! and
Go/Gy = (0.1 & 1.6) x 1073 yr~!, correspondingly.
The above phenomenological approach can certainly
be improved. We are particularly interested in determining
the relativistic terms that come from a careful analysis of
the scalar-tensor theory of an expanding universe. That
can be done with the help of the dynamical perturbation
theory of curved spacetime manifolds recently developed
in Refs. [14,15], which provides a rigorous method of
calculating the gravitational fields of perturbations whose
density contrast significantly exceeds the average density
of the universe, such as in the case of a localized
gravitational system placed on the cosmological back-
ground. The field variables of the theory are then naturally
separated into two parts: the background part, whose
dynamics is fully determined by the spherically symmetric
Freedman solution of the Brans-Dicke theory, and pertur-
bations, whose evolution is governed by the field equations
derived on the basis of the properly formulated variational
procedure applied to the Brans-Dicke action functional.
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It is the perturbations of the background metric and the
scalar field that we are interested in finding. They
determine the effective gravitational force, from which the
post-Newtonian terms in the equations of motion can be
deduced, thus improving on Eq. (2).

II. LAGRANGIAN, FIELD EQUATIONS,
AND METRIC

We take the localized system to be a planetary system
or a binary pulsar and the background manifold to be
the spatially flat Friedman-Lemaitre-Robertson-Walker
(FLRW) solution of the scalar-tensor theory. The back-
ground metric in the isotropic conformal coordinates,
¥ =(cen,x"),p=0,1,2,3,i=1,2,3, thus has the form

g;,w = a2(77)fﬂw f;w = diag(_L 17 17 1)9 (3)
where c is the speed of light, a() is the cosmological scale
factor, and 7 is the conformal time that is related to the
standard cosmological time, t;;, measured by freely falling
Hubble observers via dty = a(n)dn. Additionally, in terms
of 5, the conformal Hubble constant is defined by

H = (1/a)(da/dn). (4)

The full gravitational system is then described by the
Lagrangian, £ = £ + £ 4 P, where

NI 0@
o= (g 2P pogg,) )

is the Lagrangian of the scalar-tensor theory, R is the Ricci
scalar curvature, ¢ isthe BD field, ¢ , = 0,¢p = 0¢p/Ox*, w1is
the BD coupling parameter (assumed to be a function of ¢),
g% is the (inverse) metric, g=det(g,,), L is the
Lagrangian of the background content of the expanding
universe (mainly dark matter and dark energy, but also
includes background baryonic matter), and LP is the per-
turbing Lagrangian of the localized system. The £LP is assumed
to be independent of ¢, which corresponds to the requirement
that the geodesic motion of material objects is governed by the

metric alone without any direct influence of the BD field.
In accordance with the dynamical perturbation formal-
ism, we write the full metric and the BD field as the sums,
|
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9 (X) = G (1) + 5 (%), p(x) =) +o(x),  (6)

of their background parts, g,, and ¢, and perturbations, Ky
and ¢. We also introduce the contravariant metric density,
g% = /=gy, its background value, 3% = /=gg*, and
the perturbation, §% = g% — g%, which is conveniently
written in the form

N ™)

We then take § and ¢ to represent the dynamical variables
of the theory and use the variational procedure of
Refs. [14,15] to write down the linearized field equations
for § and ¢,

—16z & SL SL

— __) =0, 8
=568 (f’ 6@”“’&#) ®)
-6z 6

SLY 8L\ 8n
—-— o — | =—A,, 9
BN T (f’ o5 6¢> ot O
where 8L£%/8¢ and 6L/’ stand for the variational
derivatives of L% = £%(g%, ¢) with respect to the back-

ground field ¢ and metric density §”°, and

A = 2¢ S6LP
= e

is the stress-energy tensor of the localized gravitational
system. Once Egs. (8) and (9) are worked out, we can find
1%’ and ¢ by solving these equations, and then, via

(10)

}{/w = _lm/ + (1/2)?]”1/17

=1, (11)
find the full metric, g,,. (Note that the background metric
G 1s used to raise and lower tensorial indices; covariant
differentiation with respect to g,, will be denoted with a
vertical bar.)

Applying (8) and (9) to £*, and making the linearized
Hubble approximation in which we ignore all terms
containing H?, dH/dy, d*¢/di?, etc., we get the system
of differential equations for scalar-tensor perturbations,

20 - - A
o o A? S 12
@ \a+3+2w¢ (p\a+ ¢|a (3—‘1-2(1))64’ ( )
_ hlo _ Pl 2w
(llwl la + g;wA la — Aﬂ\u - Au\u) + ? (l/uz\a - laﬂ|1/ - lm/\ﬂ) - gﬂl/? (E l|a - ?(pa>
b (1 20 > b <1 2w ) Pl 2 167

+ = _lb_T(pl/ +—15! - +2guTAa+T(gy(p‘aa_¢ u):'_Aw (13)

¢ 2 ‘ ¢ | ¢ 2 | ¢ |u H ¢ ¢ H ‘ [ ¢C4 H
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where A% = l“ﬂ‘ﬂ, o= w(p), @ =dwo(p)/dp, and A = " A,,. Equations (12) and (13) admit an enormous number of
gauge modes most of which can be eliminated if we impose the gauge condition [here, #* = (1/a, 0,0, 0) is the velocity of

the Hubble flow],

2H

Y e /1
o= ol (1

ac b b

which generalizes the gauges used in Refs. [5] and [14].
Using (14) and rewriting everything in the isotropic
conformal coordinates, we arrive at the wave equations
for perturbations,

2 F  odpF 8t Ay
q)+c< H+2 3—|—2w>(p’0 (3 +2w)c*’ (13)
2 F 167a®
00, +E (H_E> () :WAW (16)

where Og = {%¢ ,; and 0Q,, =70, ,5. In the above,
we introduced an auxiliary gravitational variable

O = bu + G/ 9. (17)
and defined
F = (1/¢)(d/dn). (18)
Equations (15) and (16) have the general form
0Q + (2/¢)BQ o = 47T, (19)

with B() ~ O(H), dB(n)/dn~ O(H?*). This can be
solved by introducing two new functions, b = b(y) and
g =q(n,x"), such that Q = b*q, with db/dn= Bb.
Noticing that, in the linear Hubble approximation,

00 + (2/¢)BQ o = bL(bg). (20)
we get the equation
2
O(bg) :4:;%, (21)

whose retarded solution is given by the volume integral,
1 / a*(n) T (n'.x')
b(n) ) b(n) [x—x|

with ' =n—|x —x'|/c being the retarded time. The
corresponding solution to (19) is then

q(n.x) = - >y, (22)

4q f 1 F
=4, — (1= fhP,, + 2
K ¢c4{ W ( 3+2a)) ¥

|l |l
2o )_Lﬁzaa il (14)
® ¢ acg ®
|
am)T(.x') 5,
0(n,x) = —b(ﬂ)/ b7 Wd x'. (23)
Applying (23) to (15) and (19) we get
b,(n AN (', X)X
§0(7I,X):_ 1(4)/ / 4 / — (24)
c bi(n')[3 + 2w(n)][x — x|
b a*>(fA, (7, x"d*x'
Qw(n, X) _ _4 2(477)/ ( 2 _/4 (/ ) —, (25)
c by(n)p(n')|x — x|
with b(n) and b,(n) satisfying the conditions
1 db; F  o¢F
P (26)
1 db, F
— 2oy 2

Performing the near zone expansion [16] of (24) and (25)
gives

2 F 20/
- |® — (1 Wsl, (28
d<3 + 260)6‘4 |: af + 2¢ < + 3+ 20)) a/}:| ( )

(p =
4a F
Q;w = _W ((I);w + Z_C\Ija[)’> ’ (29)
where
al,,(x') 1d
®,=[| L& ——— [ aA, &
wy |x — x| * cdn/a X
1 d2 !/ 1 43+
—I—Pd—nz ah,, (x)|x = x'|dx, (30)
v —/aA d3x—li/a/\ (x)|x = x'|d%,  (31)
1724 1y Cdﬂ uv ’
from which the metric perturbation is found to be
f 1 20/ ¢
v, -1 - fPw . 32
[f‘” 2< 3+ 20 (3+2w)2> "ﬂ]} (32)
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To simplify (32), we appeal to the covariant continuity of

the stress-energy tensor A,,, which in zeroth order in

perturbations can be expressed in the form
do(algg) — 0j(al;) = —(H/c)(aly). (33)
dolabi) — 0;(ahi;) = —(H/c)(aly). (34)
with Ay = YA

ij» Or, upon volume integration,

/ do(aho)dx =~ / (ahg)dx,  (35)

/80(aA,-0)d3x = —%/ (aljo)dx. (36)

We notice that for any three-vector w;(n,x), w; =
9;(w;x") — (0;w;)x', and, upon integrating and discarding
the divergence terms, [y;d*x= [ (=0 ;)x'd’x. Applying
this to y; = al;y gives the virial relation,

/(aAiO)de:—iCZ/(aAOO)xide—,}:/(aAkk)xide.

(37)
!

J2aM (L 1 N1
%00_47)(:2 342w/ |x|

2aM | 1 1 n
Xij = —= - e
Yo pe? 342w/ |x| 2

Introducing the post-Newtonian (PPN) parameters [17],

1+w 442w\ 1
__ @ - - 43
"Tove <3+2w>¢’ (43)
-
p=1+ i (44)

(3+2w)(4 +2w)*’

with G having the meaning of the experimentally observ-
able gravitational “constant,” brings x,,, to a compact form,

2aM (G 1 dG
=— |- 45
0 =" <|X| 2¢ dl’]) (45)
}{io = 0, (46)
2aM (yG 1 d(yG)
= [t Vil I S 4
Xij 6'2 <|X| 2¢ d’? tj ( 7)
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If we now define the mass, M, of the localized system
by

M= (1/02)/(aA00)d3x, (38)

as well as its momentum, P’ = —(1/c) [ (aA;)d’x, and
dipole moment, I' = (1/c?) [(alAgy)x'd®x, and restrict
consideration to slowly moving sources only (that is,
ignore all terms containing A;;), we find that in the
linearized approximation the system’s mass is con-
served,

dM/dn =0, (39)

and that momentum and dipole moment are related to
each other by P! = dI'/dy. This allows us to introduce
the system’s rest frame in which the system’s momen-
tum vanishes, P! = 0, provided the origin of coordinates
is chosen at the system’s center of mass, I' =0.
Combining this with the monopole approximation,
Ix —x'| % [x], leads to ®yy = M/|x|, ®yp; =0, &; =0,
Voy =M, ¥y, =0, ¥;; =0, and we get

2_}; (1 T3 —i—12w e iwziy) } (40)
(41)
(1 3 +l 20 (3 2+w/2{z))2) }5”" (42)

|
In terms of the cosmological time, #y, the full metric is thus
given by

2M (G 1 dG
S A 48
900 * c? <a|x| 2cdtH> (48)
giOZO’ (49)
oM (yG 1 d(yG)
= (T 25, (50
Jii [ Tz (a|x| 2¢ dry )40 (50)

which in the limit H, F — 0 reproduces the standard BD
result [5].

III. EQUATIONS OF MOTION FOR
GRAVITATIONAL PROBES

To uncover the observational consequences of the found
metric, we have to derive the equations of motion for point
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probes. For that, we introduce the local inertial

coordinates, (ct,X'), associated with a freely falling

Hubble observer,

ct = cty + a*Hé;x'x [ (2¢), X' =ax', H=ala,
(51)

where the overdot represents differentiation with respect to
t, and H stands for the usual Hubble constant. Denoting
r=|X|, we find

2GM M dG
=1 52
900 +—— 2 T3 (52)
2(1 + y)GMHX'
gio = — ( )3 s (53)
cAr
[ 2%GM Md(yG)
g5 = |1+ Ar S di i (54)

with the linearized post-Newtonian connection coefficients
being

. 1GMX . 1dGG)M
T = 2 5 De=g—g 7%
1. 1 yGM (5, X" + 5, X0 — 8,.X)
Ti=—2 3 :
1 dGM 1 MGX/
0 _ 0 _ 0 _
0oy eTa o Th=t 89

These are substituted into the geodesic equation para-
metrized by the coordinate time,

ax CdXi . dxi dX*
g~ oo =2 = U ar
dax/ dx’ dx*\ dx'
o +2r% — 4+ 19 — — , (56
+(C 00 2o g Tk gy dt)dt (56)
with the result (here, n =r/r, v=7r, v=|v|)
#=-G(t)Mn/r* +F, (57)

where the disturbing force per unit mass is given by
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yGM v (27 +28)G*M?
F=- 2 2 2,3 n
GM P G .1
vE{eran - [armga| o9

On the right-hand side of Eq. (58) we have included the
“standard” first-order post-Newtonian (1PN) quadratic
term (even though it does not formally follow from our
linearized theory), which is expected on physical grounds.

We are particularly interested in the effect of Eq. (58) on
Keplerian orbits. It is immediately clear that the following
result of standard general relativity, with G /G=0,y=0,
holds: in the FLRW universe, in the linear Hubble approxi-
mation, planetary orbits do not change. The scalar-tensor
theory, however, modifies that conclusion, as will be
demonstrated below.

Because d[r x v]/dt « [r x v], the motion is confined to a
fixed orbital plane. This allows us to simplify the description
of post-Newtonian dynamics by taking the orbital plane to
coincide with the (X, Y) plane of the coordinate system [16].
Introducing the orbital basis [16,18], n = [cos f, sin f, 0],
A=[-sinf,cosf,0], e, = [0,0, 1], in which v = in + rf/l,
where f is the true anomaly (the orbital angle measured
relative to the pericenter), brings F to the form

F =TRn + SA, (59)
where
GM ( ? 2 GM
R=—Hy—==24+2) == 2r+28)—
Fr-ermb-rrnS
G h
14+2y)=+27| -
+ [( +) ot 4 r}, (60)

s=+i—¥{<z+zy>¥—[<1+2y>g+zy}f}. (61)

IV. SECULAR EVOLUTION

To find the secular changes of the orbital elements, a
(semimajor axis, not to be confused with the cosmological
scale factor), e (eccentricity), and w (longitude of peri-
center), we use the osculating equations of the perturbed
Gyldén-Meshcherskii problem [19,20] (also see [21]),

Z_;:{_a[l+12e (e+COSf)}g 7*12% [esinfR + (1 + ecos f) ]}j; (€2
de G Vi-ée7. e+cosf dt

T {—(e—l—cosf)a—i— [smfR—l— (cosf—l—m)S]}d—f, (63)
dw s1nfG V1-—e? 2+4ecosf . dt

d_f_{ : G — { cosz—i—msme]}d—f, (64)
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d 1 2 sinfG Vi-é? 2 -1
dr n( +e2035{) sinfG e —cosfR 4+ +ecosf in fS ’ (65)
df (1—e?)¥ e G nae l+e f
where . .
ﬁ(t):ﬁo +ﬂ0t7 ﬁOES?)H? (69)
n(t) = \/G(O)M/a*(1) = 27/ P(1) (66) where s, 55, and s3 are the adjustable parameters to be

is the osculating mean motion, with P(7) being the
osculating orbital period. We write

G(1) =Gy+Got,  Gy/Gy=sH (67)

(68)
|

y(t) =0 + Fot. Yo = $,H,

2.3

fixed by observations. Substituting the usual Keplerian
relations for r, 7, f, v* in R and S, and using in Egs. (62),
(63), (64), (65) the zeroth-order orbital elements [16,22]
and the values of G, y, and $ taken at the initial epoch, we
get, upon integrating each of Egs. (62), (63), and (64) with
respect to f from O to 2z, the following 1PN changes per
anomalistic period:

(@) = —aHs, + HL% { [2(—3 vy 3@)% +4(—1 + M) (6 + 570)

+ e2(4+2\/1 4yt 5 1—e2y0)}s1 +4e2(—2+ V1 —62>s2}, (70)
@) = AP (2 2VT= @)y +2(-1 4 V=) (84 70)

+ (32(6 +2V1—e?+ 2y +5V1— ezyoﬂsl —|—4e2<—1 +Vv1- ez>s2}, (71)

(i) = n3a2£§(;L_ZY;)2; Bo) + O(H?) (72)

Notice that in the limit ¢ — 1 our approximation breaks
down, as (a) increases without bound. For e — 0, Eq. (71)
gives (¢) — 0, as had to be expected. The leading con-
tribution in (72) is the standard 1PN general relativistic
correction; in the linearized Hubble approximation, there is
no additional contribution to the advance of the pericenter
coming from the scalar-tensor theory.

To find the anomalistic rate of change of the osculating
period we write (66) in the variational form,

a’ _p 36a 16G
GM) "~ \2a 2G)°
Taking O0P to represent the anomalistic change of the

osculating period and denoting §P/P = (P), we get upon
substituting (67) and (70) in (73)

5P = 2;:5( (73)

(P) G H 3n%a?

?:—2— o i {2(=3 +e*+3V1—¢?)p

+4(=1+V1=e*)(6+5y) +e*(4+2V1-¢*
=2+ V1=-e?)s,}.

(74)

—dyy + 5V 1 = e¥yy)]s, + 4e*(

The first term on the right-hand side of (74) reproduces the
result of [23]; the term proportional to H/c? extends it to
the post-Newtonian domain.

Next, with the definition of f given in (43), we see that

G 4(p-1)
—=—(1- , 75
o=-(1-1=0)r 75)
4= 1)(1
P (B—1)( +y)f’ (76)
y—1
and thus s, and s, are related to each other via
4p-1)(1 +7)
=—— = 77
D 7
The constraints [12,24,25],
y—1=23x107, p—1=8x1073 (78)
Go/Gy = 1.4 x 10713 yr! (79)
H=7x10"" yr 1, (80)
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then give the estimates for s; and s,,
51 =0.002, s, = —0.004, (81)

which, in turn, result in the following estimated secular
changes per century for, say, the Hulse-Taylor binary:

(Ad)opy = —0.027 m, (82)
(Ad)py = =7.3 x 10~ m, (83)
(Ae)py = —6.3 x 10717, (84)

These are too small to be detectable with presently available
technology.

V. SUMMARY

In conclusion, we performed post-Newtonian analysis of
the equations of motion in the scalar-tensor theory of

PHYSICAL REVIEW D 94, 044015 (2016)

gravity for localized astronomical systems subjected to the
time-dependent cosmological background. Several new
cosmologically driven correction terms have been identi-
fied, and their effects on the secular evolution of the orbital
elements have been calculated. At the present level of
observational astronomy, these contributions are negligible
and cannot affect any realistic analysis of orbital motion
based on Eq. (2) [23]. However, should experimental
methods develop further, the found corrections may prove
helpful in establishing much stricter observational bounds
on various PPN parameters as well as on the variability of
the universal gravitational constant.
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Detailed derivation of the wave equations for cosmological perturbations of the scalar-tensor theory
used in [Phys. Rev. D 94, 044015 (2016)] is provided.
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I. NOTATION

e T'and X' = {X,Y, Z} are the coordinate time and isotropic spatial coordinates on the background manifold (in
various parts of the manuscript other conventions may be used; e. g., in subsections of Section VIII);

o X ={X" X"} = {cn, X'} are the conformal coordinates with 1 being the conformal time;

o 2% = {20 2%} = {ct,x'} is an arbitrary coordinate chart on the background manifold;

e Greek indices «, 37, ..., u, v, ... run through values 0, 1, 2, 3, and label spacetime coordinates;
e Roman indices i, j, k, ... take values 1, 2, 3, and label spatial coordinates;

e Einstein summation convention for repeated (dummy) indices is always assumed, for example, P*Q, = P°Qq +
P'Q1 + P?Q2 + P?Q3, and P'Q; = P'Q1 + P?Q + P?Qs;

® gop is a full metric on the cosmological spacetime manifold;

® jop is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric on the background spacetime manifold;
o g8 = /=gg®? is the (Gothic raised) metric tensor density of weight +1;

o gf = \/—_ggo‘ﬁ is the background metric tensor density of weight +1;

o fop is the metric on the conformal spacetime manifold;

o 13 = diag{—1,+1,+1,+1} is the Minkowski metric;

e R= R(T), or a =a(n) = R[T(n)] is the scale factor of the FLRW metric;

e H = R 'dR/dT is the Hubble parameter;

e H = a 'da/dn is the conformal Hubble parameter;

e a bar over a geometric object (as in F), denotes the unperturbed value of F' on the background manifold;

e the tensor indices of geometric objects on the background manifold are raised and lowered with the background
metric gog, for example Fog = gaugsF*";

e the tensor indices of geometric objects on the conformal spacetime are raised and lowered with the conformal
metric fog;

e symmetrization of a geometric object with respect to two indices is denoted with the parenthesis, Fi,g) =
(1/2)(Fap + Fpa);

e antisymmetrization of a geometric object with respect to two indices is denoted with the square brackets,
Flag = (1/2)(Fap = Fpa);

e a prime, W/ = dW/d¢, denotes the derivative with respect to the scalar field ¢;
e adot, F = dF/dn, denotes the total derivative with respect to the conformal time #);
e 0, = 0/0x“ is a partial derivative with respect to coordinate z%;

e a comma followed by an index, F, = 0, F, indicates the partial derivative with respect to coordinate 2, which
is a convenient notation in some cases. When no confusion may arise, the comma as a symbol of the partial
derivative is omitted. For example, we may denote the partial derivatives of the scalar field by o = ¢ q;

e a vertical bar, F|,, denotes the covariant derivative associated with the background metric gos. Covariant
derivatives of scalar fields coincide with their partial derivatives;

e a semicolon, F., denotes the covariant derivative associated with the conformal metric fugs
e V, denotes the covariant derivative associated with the full metric gqg;

e ¢ is the fundamental scalar field of the Brans-Dicke theory;



e w is the Brans-Dicke parameter; in general, w = w();
e ¢ is the background value of the Brans-Dicke (scalar) field ¢;

e © = ¢ — ¢ is the perturbation of ¢ from its background value ¢. Fields ¢ and ¢ refer to the same point on the
spacetime manifold;

® 343 = JaB — Jap is the metric tensor perturbation. Fields gog and g refer to the same point on the spacetime
manifold;

® hap = gap — Gap is the perturbation of the metric density;

1“8 = bop/+/—g. In the linear approximation, [ = %8 + (1/2)g*f 5%, where 3, = §*’s.z;

the Christoffel symbols, I'*g, = (1/2)9%"(gr~.,8 + 9rB,y — 9B,x);

the Riemann tensor, R%g,, = 1'g, , — T, + T80 — I I g5

the Ricci tensor, Rag = R*au8;

the Ricci scalar, R = g®’ Rop.

II. BRIEF REVIEW OF DYNAMICAL PERTURBATION THEORY

In accordance with the dynamical perturbation theory of spacetime manifolds developed in Refs. [1, 2] we write the
variables of the theory as the sums of their background values and the corresponding perturbations,

B4 = A 4 oA, (1)

with ®4 representing the generic multi-component field whose components are labeled by a generic index A. For
example, ®4 may collectively represent the metric density,

g% =g’ + 5%, (2)
and the scalar field,
p=0+¢, (3)

of the Brans-Dicke theory. Denoting by £ the Lagrangian of the theory (regarded as a function of ®4 and its
derivatives of arbitrary, but finite, order), we first notice that the variational derivative of £ obeys the rule

oL oL

51~ 594" @

which will be used in what follows. Expanding £ in a Taylor series around ®# gives
L=L+L+LY+LP, ()
where £ = E(@A) is the background Lagrangian,

oL
Ly = @Ama (6)

LY is the infinite sum of the higher-order terms in ¢# (in the linearized approximation, these are systematically
discarded), and LP is the Lagrangian of a localized gravitational source (such as, e. g., a star or a planet), which is
considered as a bare perturbation of the dynamical system). Because the barred variables satisfy the background field
equations, we have

5L



which constitutes the so-called on-shell condition. The dynamical perturbation theory is then based on the assumption
that the evolution of the field perturbations is governed by the variational equation (now L is formally regarded as
the function of p4),

oL
— =0 8
-0 (5)
subject to (7). Thus, applying (4), (5) and (7) to (8) gives
oL 0 5 dvn
1)
= —— (L1 + LY +£P) =0 9
5(1)‘4 ( 1+ + ) ’ ( )
which results in the field equations for perturbations,
26 9 5 0L d
— _ LY 4 e} =0 10
\/——ga@A(“’ ;o8 TR ) ’ (10)

where the prefactor was inserted for future convenience, with £ = 87 being (dimensionless) Einstein’s gravitational
constant. Notice that in (10) the on-shell condition (7) should not be imposed until after all the variational derivatives
have been calculated.

III. DERIVATION OF THE WAVE EQUATIONS FOR PERTURBATIONS IN THE SCALAR-TENSOR
THEORY

Our main goal is to derive the wave equations for scalar field and metric perturbations of the scalar-tensor theory,
(77) and (78), which reproduce Eqs. (15) and (16) of Ref. [5].

A. Lagrangian and stress-energy tensor

We work with the Lagrangian of the form

1
G _ - /=
L9 =~ V7gRe, (1)
£57 = VG [53(0) 000+ W) (12)
where
) LY g 2@ (¢ 1 2w - o
S0 =2 F0) = =2 (L-2) W) = A W(O) = (W (13)
Notice that the associated stress-energy tensor of the scalar field is given by
TEP = 6(0)0.005 ~ g | 5O 0,00 + W) (1)

B. Background equations

Upon direct variational calculation, we find the following background field equations (here written in terms of @
and W),

R#l’d_) = 8r <T;i\1//[ - %Q#VTM =+ g#VW + wéuéu) + d_)mu + %guv(ﬂgv (15)
R = 87 (=TM +4W + 36141, ) + 3|5, (16)
Ta 8 M (-~ T\ ZlaT TR T 7
% = 3776053 [T (& +@'3) oG — AW + 21 ¢} . (17)



Alternatively, in terms of w = @ and W,

S T _ _ I T _ e
(RHV - §guuR) ¢ = 8w (T;% - QMUW) + % (¢#¢u - 59uu¢|a¢|a> + (b\;w - guu(b}au (18)
Tl 1 7 ! Tl 1 T 17! A
Do = T (87TTM —w'gl Pla — AW + 2 ¢) ; (19)

which immediately shows that

™ ~ W ~ O(H?). (20)

v
Also, in terms of w and A,

1 w

_ 8 - 1 — Guv P - -
R,uu = ?Tr (T;% - ?)_i__'——;:guvTM) + 3‘3_# |:2(1 +w)A +A d) - §%¢| ¢a:| + de)le + ?(b\ugbhja (21)
17 ’ Il o
B - 8 2w M 23+ 4w)\  6N¢ (: 3w ) ¢ _(b\a7 (22)
¢ 342w 34+ 2w 34+ 2w ¢ 3+ 2w )
o 1 T 7 ! ! oo
A = 7o (877 — 206+ 2X6* — w'dl°G. ). (23)
In the above,
(;5““/ = é,uu _f‘fu/é,pv (24)
Ho = 3 (Bas —Tosds) (25)
b0 = §%P0dp (26)

C. Equation for [,, perturbation

In accordance with the dynamical perturbation theory of spacetime manifolds developed in Ref. [1], the field
equations for metric perturbations, Eqgs. (10), are

ng + Fﬁ,D = 87, (27)
where

—167 & 5LCE 5LC
FG = P _ 28
e ww@WQ’®W+¢M> (28)

_ ABD #BD

pop - 10T 0 (0L 0T (29)

! V=g og+” 59 3¢

and A, is the stress-energy tensor of the localized source. Notice that in deriving (27) we defined the stress-energy
tensor of the source via

B 2 oLe
A =+ =5 5 (30)
treated LP as being of first order of smallness, and used the chain rule,
) 0gPe ¢ 1
- = 5= (0405 + 0507 — Gas"") (31)

377

65°F ~ 857 5977~ 273



We have,

1. Derivation of FEV

Now, using (99),

6L¢ dghv §LC
-1 = -1
61 G 6w 9577 05
G 9 FG
= —lﬁwag 3%1;3 5?
9gP7 Og" dgap
g 6LC
= —167— (—Jualv —
67 555 (—=Fnadvs) 550
1 5LC
- p 0o 50, —g"g o) (—Gpuag -1 — . 2
2\/__g(5p5g+5g5p g gp)( [m gﬁ)( 67T69a,8) (32)
) __
= vV —goR
0Guw ( )
5 I
5 (V90 a1 R
nv
0 (V=099™) - o ORY, ORL,. ORS,
— G0 R+ | V999 0] | 97 e+ 3T A — g ot
Gy pEAy P OR7 ., OR%, R, i
0(/=7q) _ 9T - . ) OR" . OR? o R’ i
{%gkw V_gag—} GOIRS + [V =305} | 37 5=a ™ + g = = g
Guv 9uv 8Ru,8a 8Ro¢ﬂy 8RM,3V i

1 N\ L __ . __ORY.. OR{ . ORS
+2vV=33" ) 7+ V=G (gMG) | 6Raw + | V=GEgN0) | 57 Fmal 4 g2 goa 20k
2 OR ., ORZ,, R )| s
PP DP DP
/__g lguuR_RHV (lg'i‘ /__gég)\ﬁ(g'y gau 8];%)\VN +gau 8}?)‘VN _7(7(1(9{%)\’7%
2 , R, IR, RS,
|Ba
= 1— VD puy \ o
V=g (59“ R— RV )¢
_ 885> — P 886y — 686 5By — §Bsv
+ \/__gd)gAnag <gou5g5§ YUK 5 Ky +gouag5§e 7'k 5 Ky —g"“é,’jé‘; YUK 5 Ky
|Bax
1 _ _
V=g (EQWR—RW) ¢
T_g (6 (577675776084 (6562 — 626%) + ™67 g7"6nss (6561 — 6L6%) — g67g7*646% (8551 — 6526%))] o
= 1— VD DY 7 —9 1z —uo=Lr = —av —QU = —af =puv —uv =B = —va
/=G (59# R_ R )¢+_\/29 6 ((a" 3% — g8 )+ (9 gon — gofgh ) — (" ghe — g3 mma
= 1—1/_ DUy \ - V=9 (—ap-Bv | ~av- —af=uv\ 7
V=i (59“ R— R* )¢+Tg(g ngh 4+ g gt — 25" ) ¢ ga
/1, = B N R LN
V=g [(59“ R-R" )¢+% - ¢{a]
_ 1 _\ - o Tl
- —g[ R — 5@*“’1%) 6+ b0 — o ] : (33)




1 I T o
— 5 (040 + 0% — 740 [<RW - EgWR) b+ Gudll - (bw}
_ 1\ - _ 1 _ e
= (Rpo - EgpaR) (b + gpa(b},% ¢|po - gpa {(R - 2R) ¢ + 4(25},1 - g“ ¢|,uu}
| _
= Rp (b gpaq5 ¢|po' (34)
Additionally,
5LC
—16m = = V=GR (35)
Thus, from (34) and (35),
6EG 5£G - —
—16m (hpa5 po 5¢ ) = hpU ( PU¢ gPU(b ¢pa’> + ¥ _gR' (36)

To get (28) we still have to take the variational derivative of (36) with respect to gh.
First, by analogy with (33), and taking into account an extra minus sign due to the derivative being with respect
to the raised metric, we have

1 1_ - _ a
\/—59,uy (90\/ R) ( - QQMUR) P+ Q;WSD‘ la = Pluv- (37)
Next, by analogy with general relativity,
1 6 oD n 1 n |0¢ — 11 Y 1o ytet
\/—__gég;,uj (hp RPU¢) Y [(¢Z#V) o + Guv (Qﬂ 5)|aﬁ - (¢l u)\ya - (¢l V)“La:|
1 ryfed Il o a
= 5 ((b}all“/ + 2¢‘ lHV|a + ¢ll“" |a)
1— 0 « n « Y 1o
+59m ($1asl™” + 26101 15 + G jas)
1 0 « y « Y 1o
5 (¢|uo¢ + (b\vl e + ¢|al nlv + (bl ,u|uo¢)
1 0 «@ Iy o Y 1o
=5 (@al® + 0l vjo + Dlad iy + I jua) - (38)
Now,
L0 (1 o _ap=  GurGvr - Sy 2
ZRPo afB M po=  zaf 1™
\/—_§5§W (2h 9pad (baﬁ) 2\/— 595 {h 9po g (¢,aﬁ Faﬁ¢7’7>}
_ _gﬂﬁgv)\ KA =af 7 WP s  mak=BN T _l XK 0 XA _8 o XT ? po—~  —af (1 _f’y ny
EN=1 {h 3 P1ap — 07 9pe GG Plap 5 Kg oy +yg arx. Y oy, b Gpog (%ﬁ QB%) .
1 e 1,2 1 [ ory, or? orv .\
R N a | — G0y —af — XA _Ot,@ _ —XTF_;"B l
5 ln Pl + 5 Bl 1 9urGuAg <g 61“’;# +g orr 9 ATy, by |
1. a 1 [ SAOT 4+ 6307 6RO 4 6507 550N + 6500\
— _§luu¢}a ZQMV _ gwgw\g ( xnm% + gxk(;;% xw(gv% 16
L |7
1. i 1 s 0005 +030n GROT +650% ORGA+ 65N\ -
= —gluu% + 51w = 9unGug ? <g7 — g 5 -g" 5 L9y
L |7

1 —la 1 - T T — =T 0
= —Sluwdlo + 5104 — 5 (5357 + 5767 — gwg™) (191,)
(161),, + (191), = 9w (161) "]

|:l"/¢3‘# + l(lgmy + l‘#éh’ + l(lg\y,u - guullaé\a - guuléiﬂ

1 Zla . 1<
= —§luu¢‘a + §l¢‘p‘y —

R S e =

1 Zla 1 -
— Sl + 300



N TS o P ; t ez o 7o
= _§Z#V¢\a + §l¢\uv 3 [Z\V¢\u +pdp + 2P, — guvl‘ Pla — guvl¢|a}
1 g 1, N
= —5lwda = 7 Undl + 1obiu) + 79w (l' Pla + l%) :
Also,

RJIV 5 lod T T "
(077 6100) =~ (67 (6 — o)
gungu)\ 0

— _JHRIVA XK __© XA_Z _ xm_ = PITY b
N _(g are 9 oy Y ari,fA)h ro ”L

— = i A ST A ST K ST K ST K )\ K SA
_ —Gusn (Xwépéﬁé AN Rl L 505[))1/”%]
2
L |

\/_ 59””

2 2 2

YK _P
2 D g 2

—a. g | SAOT 4 526 §RET 4 51T 576X 4 562 _
_ “9urfvr < I7P | GNP o +059, — gL U;— o P) lpggbh]
L |7

_ _g#"iglf)\ [(g’ynl)\w + g'y)\lm'r _ g'yﬂ'ln)\) J)H}

2
1 -
— - T _ |7
2( ¢‘H+l ¢|u l,ul/¢ )‘ﬂ_
1 I a n « Il
- 9 {(leulv )|a+ ((;5‘,,1# )|a_ ((b‘ ZW)J
1< « I « e g « g « Il
= _5{ |1 alu +¢\ual,u _(b‘al,uv‘F(bmlv \a"'(b\ul,u ‘Q—QZ/) luu|a:|-
Combining (38), (39), and (40) gives
1 07 (Rood — 5000ls — B0 ) | = 5 | Fltis + 26 400/
\/_59u1/ pg POV |k lpo 2 |a" Y pvlo [ TeY
5 (6]
1— ° a 0 a g [’
59 (Blapl®® + 2011?15 + 61 0p)
1 Y [eY T Te R Te g leY
_5 ¢|uo¢l ,u+¢|ul nee +¢|al H‘V+¢l wlra
—_—— —\—
2 4
1
_5 ¢|ua +¢|u v|a +¢|a V|M+¢l v|pao
———
1 3
1 e 1, - vl fae il
+5lw o+ 7 (M@l + U Plu) = 79w (l‘ Pla + l%)
1 n [} 7 « Tl n [e7 0 «@ [e’
+§ ¢|ualv +¢\ual,u _¢}aluv+¢|ulu |a+¢\ul,u |a_¢‘ luu|a
—— —— ) N—— N ) SN———
1 2 5 3 4 6]
1
= L ()
1 ey
+5 9w v (Dlagl® +201al% |5 + 617 )
1 .- —
=5 (1o u|u+¢l ulva) = 5 (D1l vl + Ao
1 - - I 1— a7 Tla
+§lw¢|a (lmu + 1 Bin) = 9 (l‘ Pla +l%)
1 a o
= i(b( +guul '8|aﬁ_l ,u\va_l V|yo¢>



1— n [eY R To 1 [eY
+59m <¢aﬂl B4+ 2¢51%% 5 — §¢|al‘ )

+5 @5‘0‘ (luu\a ~ Loy = lawiu)
1 _ _
b — guV ) + 1 (l|u¢\v + l\V¢|#) : (41)
Combining (41) with (37) gives
1- _ _ _
FG = 50 ( ot G A% = Ay — Ay — Bl — Rolyo — 2Rm6ulaﬁ)
Elw‘a\a"‘guvAa\a_lau\va_lavwa
1, 1 ja i
+§¢| (luu\a - lau|u - laum) + id)ia <l,u1/ - gg,uul>
1 Y af Y @ 1 | 1
+§guu ¢|aﬁl + 2¢\QA - §¢\al Z (l\,u¢|u + l|u¢|,u)
_ 1 _
+ (Ruu - §guuR) w+ guu@‘ahy - Pluv- (42)
2. Derivation of FE,D
We have,
SLBD _ og' SLBD
sgre aﬁpa Sghv
SCBD
_ BN WSy =~
5 — (5 8y + 040Y = 3" Gpo) S (43)
Now,
SLBD 0 1., - wB~
e 5o |V (300578065 + W) )|
1 1. o o
= _5\/ _gguu (iw(¢) B¢ oz(bﬁ + W( )) + -V w (b) H(b,l/
1 P 1 N
= V|01, - g (53000 + W) | (14)
=TEp
Substituting (44) in (43) gives
SCBD 1.
N [D(0),00,0 + oo W (9)] - (45)
Also, using (98),
6EBD aEBD aEBD
56 99 _[am}
0 = 1~*,a5* - < 0 _ 1~7—aﬁ’ _ _
= = V=9 59(0)§*¢.ad s+ W() || = 57— |V=I | 59(0)7"ad s + W(P)
0¢ 2 99|, 2 o

V7T (55 @07 0065 + W(@)) - (VT00) . (46)
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Thus, from (45) and (46),

5EBD 5EBD
— +p—— = b
ogre Y0,

bo?

600,80+ 8 W (@) + 0 [V (5709700 + W) - (VT20)) |
75 (201660 + 30V (5]
Ve (%w'w) G abp+ WG >>9"”_“( 99761, = (ov=53(5)3 )

N~ N

lp

cov. divergence

666+ 3o W (D]
VT | (3500 006+ W) o + 3O Bap| - (VT@F) . D)

lp

l\DI»—A

b*?

cov. divergence

Taking the variational derivative of (47) with respect to g"”, dropping the covariant divergence term, and noticing
that h*? is independent of g (even though we formally write h*? = \/—gl*?), we get

ppp _ 0T 6 0EPP | 5LP
N S T AN T
_ 1. o T _ I P - _
™ |:lHVW+guV (Ewl¢| ¢|a(p+W/90+w¢| (p|a) _wl¢|,u¢|u(p_w(¢\u(p|u+¢|u90m) . (48)

3. Final result

Thus,
ng + Fﬁ,D = 8mA,, (49)
where
1 [eY - a Do Do D [
FS = 5 (z,w‘ o F G A% = Ay = Ay — Reluo — Rilya — 2Ryl B)
El}“"a‘aJ’»guVAa\a*laMua*lau\ua
1 10 1
+§¢| (l,uu\a - la,u|1/ - lav|,u) + §¢|a (lul/ - §guul>
1_ x ap z @ 1 |a 1
+§guu ¢|aﬁl + 2¢\QA - §¢\al Z (l\,u¢|u + l|u¢|,u)
_ 1 o
+ (R;w - gg,uuR) w+ guv@‘ la = Pluv> (50)
N O . _ e o e _
F:?VD =8 |:lHVW + Guv (E(b ¢|a90 + W/(p + w¢| Spa) - WI¢|;L¢|VSD —w (¢m90\u + ¢\u90m) ; (51)
A% =17 g, (52)
and
- da(d) - L AW(d
s=—a@), =29 w_owe, w0 (53)
do do

D. Equation for [ perturbation

Taking the trace of (49) gives

qs( o, +A® a)— ¢ 0142005l +3¢) o A”— R+ 30!, +87 [Wz+w¢|a%<p+4wgo+2w¢l Pla }zsm. (54)



E. Equation for ¢ perturbation
1. Derivation
From general theory of Ref. [1],
F$+FEP =o.
Using (10) and (98) we get

FG FG
G _ —16m & hpgéﬁ +o 5L
0gre 5(;5

and

gp _ —167

<hpg5£BD+ 5£BD)
AT,

J

9
— 5&
—167 ¢

. 6¢

Loz - T 1~—a77 T ~1=po 1
= —167 {lpa§ (WI¢|p¢\a + ngWI) + (5(*0//9 B¢|a¢\ﬁ + WU) 12 +w/gp ¢U§0|p}
{

3

Qi

H167 4 (17@d),) , + (@5 Djaw) , + (Wp)p}

1 L i apz 7 = ~1-po T
= —167 {lpg (w ¢|p¢‘ + gng ) + <§w”g ﬁd)m(ﬁ\@ + W”) ©+ w/gp ¢g<p|p}
167 { @17 oy, + G177 BBl + D17 Gl
+167 {&"5% G5Bja + &' T Plpap + @G Blp0la
+167 {w’<5|asa‘“ + w‘“|a}

~ | ~! 7 a 1~ o o ~1 | T 1~ o ~1p0 1 ~1P0 1
= 167 {0 + @B+ 35 + 3B~ W+ G + 0B+ G e -

Combining (56) and (57) gives

11

(55)

(56)

w2 {75 606,60 + 8 @) 4 V7| (35055065 4+ W(@)) 0+ GO B0 |}

~ oo ~ 10 a 1. oo 7 ~ 1o 1 1. o ~]po . L ~ ]P0 1 1.z
16m {WSOI | +wl¢\ago| +§w”¢‘ (ZS‘QQD—FLU/(ZS}QQD_W”QD—FQQJ/ZP ¢\p¢|U+Wlp \a’¢|p+Wlp ¢|pd - QWIZ}

o D 1—a a
'Hp Rpg'_§g Bl‘ag—l '8|aﬁ=0.

2. Final result

o+ L + T<w¢ Q”¢'a¢|a—W”>sﬁ
1w 11

o 1 afB 1":/ afB o 7 P, « 1 « o
+AG|o +1 B¢|aﬁ+§gz Bqﬁ‘aqﬁm— AR (Raﬁl A 51' o — A a) =0.

(58)

(59)



IV. LINEAR HUBBLE APPROXIMATION IN THE SCALAR-TENSOR THEORY
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In the linear Hubble approximation for perturbations ¢ and [, we ignore the terms containing H?, H, and é/ .
(The overdot, we recall, represents the derivative with respect to the conformal time, d/dn.) To keep track of the

time dependence of the gravitational “constant”, despite of (191), we must retain all terms containing ¢/¢.

Additionally, we will use the following formula valid in isotropic conformal coordinates:

o 1
0l = o (Op —2Hp))

A. Field equations

(60)

To arrive at the linear Hubble approximation, we first drop the “obvious” terms proportional to (5}5 , (5‘ qu‘,,, RW,

W, W’ in Egs. (54), (59), (49), and get the following three equations,

_/1 _ 20 -
¢ (51% + A%a) + 3010 A% + 3017, + ?“’qs‘%‘a = 8nA,

1 2w 2w (W 1Y) - 2w -
_l|ao¢_T aa_T<__:>¢Q¢Q_TAQ¢Q+AQQ—05
5" | o | o \w ¢ | o | |
and
[e% — « Q‘_)|0‘
(lwl la T G A% o — Appp — AV\H) + ? (ZW\a —lapy — lowlu)
_ gl 1 2w ) 2w o (1 2w
i (gl = o) + 5 (gt = o) + 5 (30 Sow
Dl . 167
+2gyu (J|5 A ¢ (gmﬁﬂl | </7|;u/) = TA,UJ/?

where, we recall, A* = 1*%| 3, w = w(¢), w’ = dw/d¢. Instead of (61), by combining (61) and (62), we get

8T
34 2w

|

0% ¢‘Q<P|oz+ Pl =

)

3+2

which will be used in what follows. Thus, we have the system of equations (64) and (63). Substituting

2w 2w
= (-= O

n (63), we get to order O(H),

T

o - (o7
lw'| ot Guv Ao = Ay — Ay | + P lwla  —laply = laviy
—_———
gauge will cancel by C® gauge

s (5 50) v (55, 5 (5 5)
Inrg 57). T\ 3%, T\ %),

will cancel by C'* gauge

A%+ ¢ (g;wp' o <p|,w) = I%WAW.

¢|oz

+2gy‘y ¢

We now introduce the gauge

A% = B® +C® + D,

(63)

(64)
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where we define

B = 2Hl"6ulg, (68)
_v_/
”Celestial...”
S ¢'a( 2w>
co = Y 0 -5, 69
PRl & L (69)
|a 7l
pr = 2 27 Taad ¢7—<p. (70)

6 a9 @

——
Brans—Dicke

This gauge generalizes both the gauge used in the “Celestial ephemerides” paper [3], and the gauge used in the original
Brans-Dicke paper [4]. We notice that to order O(H),

_ _ 2H _ 2H ([ Pla _ P _ Plu
l ot 9uwB% o — By, — B, :go‘ﬁll,_a +—u°‘8aly+—<gyuaT—UT—UVT , 71
p B ul | e T I K 1 3 ;Lfb 3 (71)
e _ gl 2w b (1, 2w b (1 2w
gul/C la — C,u|1/ - Cu\,u = Guv—— l ¢ - l sl——v - _‘* sl——
s \2735%). o273, s \2"35%),
é|a (b‘ @\a
+— (lauly + lavin) + Guv———0, (72)
o ( wly \u) w2
|
_ _ 9% 20 2H <_ oPla P ‘/’Iu)
guD a_D V_Dl/ = —Jguw— +—— — | G — —Uy— —Up— |, (73)
H I Bl [p H (b (b I (b 12 (b ¢
where in (71) we used Eq. (115) of Sec. VI. This gives the system,
2w Pl 8T
lox Ll - A
4 |a+<3+2w > g Jle T 3
plo o e 16
_af (b _ P _ Plae ™
g ll/a +( )lu,a+gu N _gu = - —*A Ve (74)
pr,af a ¢ Iz Iz o Iz 92 P iz

Re-writing everything in the Hubble conformal coordinates with the help of (60), and taking into account that, to
order O(H),

o (57)-Sorsm (),

and

¢ ¢
e[ (@)
a? (13 (13 0
- f“; D(“2—9")+2(2H—JE) (i> ey (aZ—‘p>
a ¢ ) ¢ /o

a? I 6 o ) a
I N S e a® fuvp LT
-5 _D( . >+(2H—]—") - >)0 oz (76)
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we get
F W' 87
Op—2 - = = BN,
4 (H 2 +3+2w]:) 20 = grggl hen (77)
F 16ma?
DQHV + 2 (H - 5) QHV,O = TAMU7 (78)
which reproduces Egs. (15) and (16) of Ref. [5]. In the above, we defined
_ L dd
F=fo_1d0 (79)
¢ ¢dn

and introduced a new gravitational variable @), (a direct analogue of the variable «;; that appears in Eq. (23) of the
original Brans-Dicke paper [4]),

Quo = L + gwg. (80)

Additionally, and this will turn out to be important for checking the gauge condition in Section VII, substituting

|
2w 2w
e (22 + O(H), 81
o= () | +om 1)
in (62), we get to order O(H),
|a
1 2
(_l L ) 4 A%+ O(H) = 0 (82)
2 % "
Using (67) gives
@\am
Ao, = -Ele o, (53)
and thus, from (82),
| |a
1 2w 12 |a
21 - = =2+ O(H), 84
(31-%¢) =" vom (8)

which shows that the field perturbations satisfy the constraint
1 2w %)
“l——p=<+0(H), (85)
2 9 ¢

and thus the actual form of the gauge satisfied by the field perturbations is not (67), but a somewhat simpler,

2 HlB 2 \
LY DU A IO L P R (86)
a ¢ a ¢ ¢
B. Solving the wave equations
Egs. (77) and (78) have the general form
0Q + 2BQ o = 4na®*T, B~ O(H), B~ O(H?). (87)

This can be solved by introducing two new functions, b = b(n) and ¢ = ¢(n, z*), such that

Q = b’q, (88)



where b = b(n) is defined by
b=Bb, b~ OMH), b~OH?).
Noticing that, in the linear O(H) approximation,
0Q + 2BQ o = b(bg),
we get the equation

2
EKbq)::4ﬂgéZ,

whose retarded solution is given by

n=n—|x—-x|.

L[N T)
009 = =55 | Gy e

The corresponding solution to (87) is then given by

2(0/ Ja——
Q)= =to) [ G LT e ol ==

where, we recall, b = Bb.
For example, when applied to @ = b?g,, = ¢, the retarded solution (93) takes the form

_ i () 2 AW,X) 5,
ol %) ‘%m%/émq3+2MW)m—XWﬁx

- 1 2 [Phas(n X)) 5, A
= —b = d’x’, B=
(n) / b(n) 3+ 2w(n) x — x| x

F w'e ,
=Tty Ty ”

S
If

SIE

S S
<

When applied to Q. = b?qu = L + G p/@ introduced in (80) and (78), the retarded solution becomes

S (n,x _e(n,x —4a®A,, b F
) =ola) [ St g, PN, s, - AR g w7
=Quv

We will use this form of [, in Sec. VIIC to check the gauge condition.

V. APPENDIX: SOME USEFUL FORMULAS

Given
S:/f@m%,

the variational derivative of F with respect to the variable @ is defined by

SF_0F 9 0F | # oF
5Q  0Q 0r°0Q.,. 0r*02P 0Q. a5

It can then be shown that

OF  OF {8}'] { OF ]
et Ba

@ B % a aQ;a aQ;a,@ :
and, in the case of Q = g, and F = F(g,, I, guv)’

0Guw B g 2

0F  OF 1( ., OF OF . OF ) ( ., OF OF oF )
Ba

ot e — 97 o e 9 o — 97 5
are., are are, RS, OR,, OR;,

15

(95)

(96)

(99)
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Now, the full metric is
Juv = Guv + gaﬁ = gaﬁ + 5gaﬁ7 5gaﬁ ~ —3P + %av%l,ﬁv x*, = ga#%;wa P = gvuzﬂggaﬁ' (100)

The raised Gothic metric is

00 = V=gg™?, §° =v=gg*®, g% =g + 50, pP = g1oP, (101)
Given
9% = V=99, (102)
the relationship between the determinants of gog and gog = gas/v/—9,
g = gila 9= det [gaﬁ] ) (103)
and using
d(vV=9) 1 w 0(V=9) 1 dg™* A
— = =+5vV—99", — " =-5V—99uw: =—- ", 104
oo~ T2V g VI Gy =9 (104)
we have,
1 a
99 9 (JT—gg ﬂ)
89#1’ B 89#1’
_ 9(v=ae™)
gt
1 d (g°7)
= —— — O(B .
oV 898 +v—g D
1 « 1 (6% 1% «
= _5\/__99;”/9 d + 5\/__9 (5H5ﬁ + 51155#)
1 (6% (6% «
= 5= (6285 + 6208 — g*Pg,) (105)
and, similarly,
d9a 1
Bgﬂf = _m (9angsy + Gav9pu — GapGuv) - (106)
It then follows that
0 1
W (9aBIps) = _m (908 (9pugov + GovGou — Jpouv) + (9angpy + Jav9su — 9apIuv) Gpol - (107)
Then,
1 1 1 1
(98 — 08 4 Egaﬁ%+ %“(O‘%m# - 5%0‘5%— Zg“ﬁ <%‘“’%W - 5%2) , (108)
and
1 1 1 1
w8 = —la —Gapl + 1" (o lgyy — =lagl — =Gag | 1M1 — =12 ), 109
Hap 8+ 9apl + 1 alg)u — 5lap 49ﬁ< " 2) (109)
where
= x5 = G %0, (110)
so in linear order in »®? we get
1_ 1_ o af 1 —af
L=, ly=—3u+ 59#1'%7 oy = —l + 59#1/17 »*P = [P 4 59 l. (111)

For additional details the reader may consult Ref. [1].
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VI. APPENDIX: WORKING OUT lW‘a‘a TO LINEAR ORDER IN #

We first notice that for

B® = —ﬁzaﬁaﬂ, (112)
a
we have
2 2 2 o
B% 4 = —%la%m +O(H?) = —TH’“AQ +O0(H?) = +%ﬂ“% +O0(H?), (113)

where the gauge condition (67) has been used. Additionally, we have:

[ — gHVZ

lag |

af|pv
= g" {(laﬂ\u),y = Teulpsin = Thylapln = Ff‘”laﬁlp}

= g"¥ {(la@# —Doulos — fgulo‘p) ~Lavlosin = Fg”la’w - Fzylaﬂp}

SV

i R o Ho(cn oo
= §"apu + 3" [; (5guu + 0 la — u”gw) lop + o (5Zuu +0pus — “pgﬂu) lap]

H
+;gw [(6@@,, + 8500 — W Gaw) Lpp)u + (5gau + 6hug — ﬂpgﬁu) lapip + (55@, +60u, — apgwj) lamp]

Q

9" lapur + —= [0lap = Wlup.a = Wlapp + 9" talupw + 9" Uslapy]

2H
gwlaﬁwu + 0 [aulaﬂ,u - auluﬁla - aulaulﬁ + aalﬂum + ﬂﬁlaulu}

Q

Q

a

2 2 2 2 2
gHVlaB#W + _Haﬂaulaﬁ _ (_Huﬂluﬂ) _ (_IHUMZHQ> + _Haalﬂu\# + _Hﬂﬁlaum
a a |o¢ ‘ﬁ a a

o 2H _ 2H _ 2H _ 2H _ 2H _
= g:“‘ laﬁ,,ul/ + TUJ“(‘?ﬂlaﬁ — <7u“l#5) “ — (Tu“l#a> y =+ T’UJO‘AL-; + TUL-}AQ

o 2H _ 2H_ 9 2H_ Pla
= gl“‘ laﬁ”ul/ + T’LL‘U'(‘)U‘ZQL-} + Bﬂ‘a + BO“B - Tuo‘? - 7’&#}7 (114)
Then, using (113), we get
_ _ 2H _ _ 2H e 2H (¢ _ Pla
|t woo_ _ _ v I prle 18 |
lag" |y + 9apB" | — Bajp = Bgja = §"lapw + —= " Oulap + Jap—_—1 3 a (ua 5 T ¢—)>
1 2H (Pl P8 Pl
= — (Olap + 2Hlapo) + - <ga gnfle g P18 g Pl (115)
a2 5 5 a ﬁ ¢ ¢ ﬁ ¢

VII. APPENDIX: CHECKING THE GAUGE CONDITION
A. Classical electrodynamics

As a warm-up exercise, let us recall how the gauge condition is checked in classical electrodynamics. In that case,
the retarded solution for the vector potential A* is given by

(4]
A“(t,x):/wd%’, =t |x—x| (116)

x — x|
Using the notation

=X, t'=t—R, R=}x-x| 09, 6=0/0a", (117)



we get

We now notice that

and thus

as expected.

B, A" (t, %)

9, A (t,x) = 0, (/%d%,) :/5u (%
(1
")+

o (7)) ¢

R

i /10 v otk ’ ok i 3./
7 1007+ (8 )((%t)] + 5" 0k (R)}d x
= [0 + (965) (o) - 0 (%) } da’
Ly
R1

. . 1
ai'° + (agg”“) (a,gR)} — it (E) } B,

A" = (94" (267" 0LE),

() - (1), .0

Substituting (120) into (118) finally gives

=0, continuity

:O,

B. “Celestial ephemerides”

Now let us verify the gauge,

BY = —

used in the “Celestial ephemerides” paper [3].
First, notice that in conformal coordinates, for any symmetric tensor [*",

1

v

g#agyﬁla,@\u
""" (lapv — i leg — T, L
g g ( af,v avkpB Bv om)
g'"g
H
35" lap., + - (g""u, + o5ut —
2
guaguﬁlaﬂ)y 4 ﬂlﬂ” _ —%l“”a,j
a a

35" lap., + %155 + 2HIMO

GG P log. — HIgH + 2H1MO.

a~) " +

IHZQBUIQ,

UBla,B,V + g H (énuu + o5 uoz — U gozl/)l v

J{w o @), - [ e ()| o
[afpr o), e o () o

=0, dlvergence

solution

VBH (éﬁul,—i—& ug —u gg,,)l

ﬁ (g""u, +u™ — 4u”) ",
a
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(118)

(119)

(120)

(121)

(122)

(123)



Next, the retarded solution, [*¥, used in the “Celestial ephemerides” paper is

L (t,x) =

~daty) |

a(m') T (', %)

d3/
x—x] "

where 7, is the stress-energy tensor of the matter perturbation. We have,

174
",

g"*g""(~4a) / A

’Hl”o—i-g“o‘g”ﬁ(—éla)/@,, (a af

1 alfuafuﬁlralﬁ
Lo fo. (£

"G Plag., — HIgh + 2H1M°

a
= g“aguﬁal/ <—4a/
a'T! a
= """ () (—4 / " dSw’) +3"°g"" (—4a) / 0, (—R

a/T/
"5 Hlap + §"*5"" (—4a) / 0y (—R“ﬂ ) d*a’ = Hig"" + 2HI"

177

Raﬁ d3II> _ nguO + 27_”u0

177

af

1771

7 ) 3z’ — High® + 2H1*0

a/ 4
<—R“ﬂ) d*a’ — High + 3HIMO

= ) d3z’ — Hig"" + 3HIHO.

n =n—lx-x|,

Now performing a few steps analogous to those in electrodynamics (see Eq. (118)) gives

1" —HIg" + 3HIM

1

v

al

Conservation of THY,

gives, in conformal coordinates,

Then for the 0-th component we get

IO

sota) [ {0 WP T) + 0 (PO} 85— (—0) [ 5 (

19

(124)
) 3z’ — High® + 2H1*0
(125)
a/f'uafkﬁ,];iﬁ

R

) A3z’

=0, divergence

—Hl§”0+37-ll”0+ %(_4&)/% {66 (a/fuafOBuﬁ) 4 [a]/c (a/fuafkﬁuﬁ)]tl:mnst}d3x/'

I

9p (V=9T*") + V=3I, TP =0,

do (aToo) — 95 (aTo;)
0o (aTio) — 05 (aTiy)

—H (aTk)
~H (aT) -

80 af()af()ﬁ%ﬁ) + 8k (aankaEB)
9o (af*fTo0) + O (af® £ Tom)
9o (aToo) — Ok (aTox)

—H (a’]?ck) )
= —H (af*Tix)

(126)

(127)

(128)
(129)

(130)
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and thus,

lOIJ - _ 1700 3 ZOO _ f_lk —4 E/ IT/ d3 /
v Hg +3H at ( a) R (a 1k) z

treat H’ as constant

ik
~ —ng0°+37-lloo—%f—4(—4a) / % (@'T"ix) d*’
a
_ _ 147700 00 _ ﬂ _ l 1 3,/
= —Hlg" + 3HI 7‘[&2( 4a) R(ale)dI
~ik
= <G + 3R — H 1y

= —Hig™ + 3HI% + Hg"* 1,5
— _ngOO 4 37_”00 4 Hgiklikgoo 4 (HgOOZOOQOO _ HgOOZOOQOO)
= —HIg" + 3HI + HIg"° — HGool°g"°
= 2HI". (131)
For the +th component,
I' = 0o (af™f*Tap) + Ok (af [ Tap)
= 0o (af” f*T;0) + O (afijfkm%‘m)
= —0o (aTio) + Ok (aTix)
_ H(aTh)., (132)
and thus

liv

= 3Hzi0+i(—4a) 1/(a’T’)d?’:p’
‘V - a4 R 20

treat H’ as constant

- 1 1
3HIP + HE(—ZLUJ) / = (aIT/io) 32

Q

, 1
= 3HI™ +ngw

, 1
= 3HI© +Hggmoyl“”

= 3HI + Hfipfo "
= 3HI" + H fir fool ™
= 3HIO —HIP
= 2HI". (133)
This shows that in conformal coordinates
W, = 2HIM, (134)

as required.

C. Our scalar-tensor theory solution

We will again use the primed notation,

W =Suw(t'\x), t'=t—R, R=[x—-x|, 9,=0/0s", (135)

uy =

We first write down (123), which is a general result for any symmetric tensor expressed in conformal coordinates,

", = g"g"Plag,, — High + 2HI*. (136)
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Next, for our retarded solution [5], I#*, as found in (95),

Suv (', x') _ p(n,x) —4a%A,, b F
ZHV(TLX) = b(’l]) / ﬁd:sx/ Gy (5(77) , S;uj — bQT) s , B = 5 =H — 57 (137)
=Quv

we get
1, = g"g" lap,, — HIgh® + 201"
S/
= g"*g""0, (b/ —Ld*a — gagﬁ) — HIgh® + 2HIM
R ¢
S! S!
= gg7on ([ Faw) «ona [o (S )~ 7000, (gun ) - e
S/
= 73" BQus + 3"*3""b / 0, (%ﬂ) &z’ — g'*g""o, <gaﬁg> — Hig" + 2HI"°
= BQ“O—i—g“O‘g”ﬁb/@ < >d3 '—g"g""0, <gaﬂ§> — High® + 2HI*
- B (z“o +g“°z) +9"g ”ﬁb/a < 5 )d3 = §"g""0, (%5%) - High + 211"
= BIM 4+ Bg“"% + g“ag’jﬁb/&, (%") >z’ — gheghPo, <gaﬁ%> — HigH + 2HI°
S/
— Bglmg +guagl/,6’b/ay (%ﬁ) d3:ZTI _gﬂaguﬁay <gaﬁ§> _ nguo + (2H+B) ZMO
© f;m fV5
= BEI“OZ - 5", (9a,8 ) / dy Pa’ — g + (2H + B) 14, (138)
A few additional steps analogous to those in electrodynamics (see discussion following Eq. (118)) give

", = Bg“og - g"*g"%o, (ga/ag) — HIg + (2H + B) I*°

1 1 / pa £08 Q! / na pkB Q! ;wszBSI 3./
+gb E {80 (f f Saﬂ) =+ [8k (f f So‘ﬂ)}t’:const - _b 8k d’x

=0, divergence

= Bg;tOg _ Q”O‘QV’B&, <gaﬂ§) _ 'nguo + (27_[ 4 B) 1O

1 1 o o
+gb/ﬁ{a() (f1f20Shg) + [0, (f* fkﬁsgﬂ)}t,:mmt}d%’.
=1+
(139)
Notice that
[
=V 90 —u0 (P (P
g"g"%o (ga —) gOH - F)L + —, 140
53 ( )¢ 3 (140)
SO
) _ F\e e ot
B,U.O(p ,uauﬁ8<a >_ #0<H__):_ “02’]—[—]::—7
7 g"g Gap g 7 5 )59 ( )Q5 3
F\ o0 (plu
_ _H+_) wo " 141
2)% 67 % ()



and thus

22

F 12
v = <—7—L+ 5) g“og - % — Hig"® + (2H + B) 1"°
1

1 o a
e [ {0 5980) + [0 (2 P00}

=]+

(142)

For the 0-th component of I* we get

19 = 0y (fOf%Sap) + Ok (£ £ Sap)
= 9o (f2°£S00) + On (f*°F* ™ Som)
= o (Soo) — Ok (Sok)

- —4a2A00 —4a2A0k

BY=H R

— (—4@ (aA00)> Py (—4a (aAOk))
bo bo

_ ao( 4”) (ahoo) — D ( - ) (ahor) + _b—‘;ao (ahoo) — —25, (ahor)
N—_———

bo bo

=0
—4a’A —4a’A —4a?A
= H Zqz © _ B ZJ) 0 _F Z . 0 4 {ao (aAoo) — Ok (alor)}

= (H-B-F)Sp+— {50 [a (Moo + Ago)] — 9k [a (Ao + Agy)]}

= —%—Soo + —b_‘;a {00 (ahoo) — Ok (ahok)} - (143)

For the i-th component of I* we similarly get

It =
= 90 (f7f%S;0) + 0k (f7 £ "Sjm)
= —0o (Sio) + Ok (Si)

B (1" P Sap) + Ok (f** f* Sap)

—4a2AZ—0 —4a2Aik
‘30< % )”k <T)

—4a%Asg —4a®A “da?Ap\  —da
_H( bo )+B( bo )+'F< b >— bo {00 (alio) — Ok (alir)}

- (7‘[ - B - Jr) SiO — —_4-;@ {(CLAZ()) — 8k (CLAlk)}

+—= Szo b¢ {(aAzo) Ok (al\ir)} . (144)

To find out what 9y (aAoo) — Ok (ahox) and Jy (ah;0) — O (aAix) are we need to do a few additional calculations.
First, by taking the covariant divergence of (63) we get, in the linear Hubble approximation,

S PO S U T

=O(H), by (62)

On the other hand, for any symmetric tensor s*” we have

P g—

v = g |:\/%—gau (\/__ggﬂysaﬁ) - % (aag,é’u) SBU:| P (146)
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which in conformal coordinates takes the form

0o (CLSO()) — 8j (asoj) = —H (askk) + CL5SOV‘ (147)
0o (asio) — 05 (asij) = —H (asio) — a5sw| (148)
Applying this to A gives,
80 (CLAO()) — 8j (aAoj) = —H (aAkk) 5 (149)
80 (CLAio) — 8j (aAij) = —H (aAio) . (150)

Therefore, for the 0-th component of I* we have

F —4a
0o _ _ =
" = 5 Soo + b¢ ( ’HaAkk)
]:
= —5S00 ~ HS (151)
Finally, plugging (151) in (142) gives
[0 !
), = (—H + g) 98—~ HIg + (2H +B)1” - %b/ = (f Sho + H RS, ) i
treat H’ and F’ as constants
_ (_ f 7008_90_‘0_ —00 _f oo_f 00 _ ﬂ ,
= (H+2)g s 3 Hlg™” + | 3H 5 l 2Q ’HCLQQZ;C
F Pl F F g'*
- (e D)o e ) 9 )
F o F zk
= (—H + 5) goog - % HIg™ + (31 — F) 1™ = 5 gOOZ HE (k + gik§>
F 10 F g™t
_ (—H + 5) goog = % HIG™ + (31— F) 1™ = Oog H—lm Hi—Qgikg
4 (H§OOZOO 00 HgOOlOO 00)
added and subtracted same thing
F —ik —ik
= (D)L — e gy g 0 —L g0 T,y g, P
2 é (;5 —_— — 2 é a? a? 10
2 SN———
1
+ (Hgooloogoo — HGool®® —00)
1 2
F\ _o0® 90‘0 00 _ ]:70090 g*_
= —H+—) 0L 2 4 (2H - F)1 39" = Mg
( 2 ¢ ¢ * ) 27 ¢ ¢
F\ o0 ‘P‘O 00 _ ]:—0090 00-ik- ¥
= —’H+—)g°0=—T + 2H - F)1P° = =g + HG" g% g =
( 2 )95t =595 "o
F\ _o0® ‘P‘O 00 ]:-00%0 —00¥
= —H+—)900=—T +(2H — F)1%° — Z g% 4 3350 =
( 2 ¢ ¢ ( ) 27 ¢ ¢
F\ _o0® 90‘0 0 F 0¥ _00 %
- —H+—)gOO——— +(2H - F)I% - g% L +3Hg"
( 2 ¢ ¢ ( ) 27 ¢ ¢
F\ o0 90‘0 0 F _00¢ _00 %
= —H+—) WL 4 2H—F)1% - Zg% < +3Hg™Z
( 2 ¢ ¢ * ) 27 ¢ ¢
|0
= (2H - F)I™ + 213" % - %, (152)
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in agreement with (86).
Now, for the #th component,

F 4a

r = +58i0 - b—é (—Hahpo)
]:
= +5Sio+ HSi, (153)
and thus,
_ li _ ! !
", = —% +(2H + B)1" + %b/ <7—l’+ %) %d%’
treat H’ and F’ as constants
i _ /
~ —% + <37—L— g) "+ <H+ JET) %b/%d%’
a
I F F\ 1
¥ 20
= I —— 1 — | =1
= (-2 ) 10+ (W4 7 ) 2ot
I F F\ 1
=5t <3H - 5) " <” * 5) i ol
li F\ . F
_ _% + <3’H— 5) 1+ <H+ 5) Finfoul"
lé F F
= —% + <37‘[ - 5) "+ <7‘[ + 5) fikfo()lko
i F\ . F\ .
¥ 20 i0
= (-5 ) - (w3
0 <P|i
= (2H - F)I"° — 5 (154)

as required.

VIII. APPENDIX: BACKGROUND FRIEDMAN COSMOLOGY

Here, for convenience, we list a few results related to the background Friedman cosmology.

A. General considerations

0

In this Subsection, the derivatives with respect to the coordinate time z", cosmic time T', conformal time 7, and

the scalar field ¢ will be denoted by

OF (a0, ') aF(T) aF(n) _ . dF() _
—=F =F —t=F, —==F". 155
920 ,05 dT T dn 3 d¢ ( )
We work with the conformally flat background FLRW metric,
dg? = a*(n) (—dn2 + 5ijdxidxj) s Gap = a2(77)fa/3, fap =diag(—1,1,1,1), (156)
so that
Do H - - == T T T T T T T
By = T (56u'y + 5wuﬁ —u gﬁw) ) Fgo = F%o = Fgo = Fgo = F(1J1 = FgQ = Fgg =M, (157)
_ 1 1. _ ) _ _ _ )
Ros = = |H (9 — 2tati) + 2H2 (gus + tatis) | Roo = 3%, Rur = Ras = Rag = H + 237, (158)



where the velocity of the Hubble flow is
" = (1/a)sf = (1/a,0,0,0), @, = —ad) = (-a,0,0,0), u,u" = -1,
and the (conformal) Hubble parameter is
H=d/a.
Then, in the isotropic conformal coordinates,
dloo = (;3 - H(Zv dloi =0, ¢pj = _Hgfija
3= (5+2md),
F G0 =~ "
a
and
Ty = (€+P) Uty + Pju = diag(a’é, a’p, ’p, a”p),
Ty = (e+p)u"a” +pg"” = diag(é/a®, p/a®,p/a®,p/a),
™ = g"TM = —e+3p.

B. Background Friedman equations with conformal time

Combining the results of Subsection VIIT A with Egs. (21), (22), and (23), and calculating the sums

— 1 54 a? “la
Roo + ¢ R — E¢|a
and
1 .-
5az‘R — 312,

we get, in the isotropic conformal coordinates with conformal time 7, the background Friedman equations,

= =\ 2
o - ey (§) v

= —_ - 2
L 8ra? [ 34w _ w B 10) 3 Wo 10) a? ' T
M= — [3+2w6+3+2w(3p)}+3HZ_<‘“_§3+2W) o) T3t (2w +3X9),
) - 8ma® o,
OO = 5o, €3 — 550

C. Background Friedman equations with Hubble time

In this Subsection we work with the usual Hubble time, ¢, defined by
dt dH dH
— = =Ha, —=|H*+—)ad*
= ® e g, ( T ) ‘
Then,

d?¢ dp  (d*¢ Ao\
d—772+2Hd_77_ (W-f—?)HE)a .

For the remainder of this subsection the derivative with respect to ¢ will be denoted with an overdot.
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(164)

(165)
(166)
(167)

(168)

(169)

(170)

(171)

(172)
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1. Friedman equations in general background cosmology

The background “matter” is assumed to be a fluid described by the equation of state,
P = ag, (173)
and obeying the law of conservation,
eaP(1+e) = gy 30+, (174)

From (168), (169), (170), (171), (172), we get the background Friedmann equations,

N 2 =\ 2
1\ 3+ (¢ 8me A
(H+§$> T ((;5) T35 Ty e
- — - 2
2 g SmE[34 (1+3a)w 1) 3 Wo 10) 1 )T
HE = _Q[W}‘LHg_(w_ium) <$> 3o, BWAH3Xe), (76)
= = 87T _ w/ =
O+30H = —— - (1—3@)6—3+2w¢2. (177)

2.  Friedman equations in standard Brans-Dicke background cosmology

The Brans-Dicke theory is recovered by setting
A=0, ' =0. (178)

One possible solution maybe found in the power-law form by using the Ansatz,
t\?" - - [t t\°
= —_— = —_ € = € —_— 179
a ag (t0> 3 (b (bo <t0) ) € 0<t0> ; ( )

= tr—2 lda ¢ 1
= -1)—, H=-—==, =
d) ¢0T(T ) t6 ) a dt £’ ¢

so that

Using (178) and (180) in (174), (175) and (177), we get the system,

s+3¢(1+a) =0, (181)
2 4(3 + 2w)r(r — 1+ 3q)
2 2= (14+Zw]r? 182
(2¢+7) ( —|—3w>r+ 30— 30) ) (182)
s—r+2 =0, (183)
- T (1-3a) _ o
= t 184
%o 3+2wr(r—1+3q)€0 o (184)
whose solution (which in the limit w — oo correctly reproduces the standard Friedmann cosmology) is
2[1+ (1 — a)w]
= = = /= 185
4431 - a?)w’ (185)
2(1 — 3a)
= = 186
" 4431 - a?)w’ (186)
_ 60+ a)[l+ (1 - a)w] (187)
4+3(1-a?)w
It is interesting to notice that

1¢ (1-3a)
—_ L v 188
H¢ 1+(1-aw’ (188)
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and thus there are two small parameters in our theory,

X1 = HTQ, X2 = 2T() = 7HTQ, (189)
¢ w

where Tj is the characteristic time of the dynamical evolution of the system, say, its orbital or rotational period. If
a#l, w>1, (190)
which is a typical situation (currently accepted value is w ~ 4 x 10%), then

X1 > Xe- (191)
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