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We have constructed a fully microscopic self-consistent theory of the dc Josephson effect in clean periodic
superconducting multilayers with realistic finite-size repulsive barriers, at arbitrary temperatures. We have
derived an explicit analytical expression for the critical Josephson current j c as a function of the
superconductor-layer thickness a . In the limit a!#0 , we have found fundamental differences with the
Ambegaokar-Baratoff relation: a strong reduction of j c and an unusual temperature dependence. In this limit,
we also predict an exponential decrease of the critical temperature and the gap parameter due to the depairing
effect of the Josephson current. $S0163-1829!97"04037-X%

In the last years considerable effort was concentrated on
the fabrication of high-quality superconducting periodic mul-
tilayers with Josephson coupling through insulating1 and
semiconducting2 barriers. These devices are believed to be of
great importance for future microelectronics.3 On the other
hand, experimental and theoretical studies of artificial Jo-
sephson coupled multilayers may contribute to the under-
standing of some of the intriguing features of high-Tc super-
conductors exhibiting the intrinsic Josephson effect.4
It is well known5 that the principal physical characteristic

of any weakly coupled superconducting system is the critical
Josephson current j c . Unfortunately, the problem of the mi-
croscopic calculation of j c in weakly coupled periodic mul-
tilayers has not so far received proper attention. However,
the very first theoretical results reveal dramatic differences
with respect to single-junction behavior. Thus two of the
authors !S.V.K. and S.V.N." have recently proposed a self-
consistent microscopic theory of current-carrying states in
Josephson- and proximity-effect-coupled multilayers near
the bulk critical temperature Tc0 .6 Regarding j c , they found
drastic deviations from a single-junction case: unusual tem-
perature dependence for superconductor/normal metal !S/N"
multilayers, and a strong reduction of j c for S/I multilayers
in the limit a!#0 !a for the S-layer thickness, #0 for the
BCS coherence length". The latter result, explained in terms
of the nonlocality of j c , suggests that at lower temperatures
(T!Tc0) qualitative deviations from the Ambegaokar-
Baratoff relation7 for a single SIS junction should be ex-
pected. Our aim here is to clarify this situation in detail.
In this paper, we derive an explicit analytical expression

for j c as a function of a for arbitrary temperatures in the
framework of a microscopic model with a periodic repulsive
finite-size barrier, typical of superconductor/semiconductor
!S/Sem" multilayers. In the limit a!#0 , we investigate the
effect of the suppression of the critical temperature and the
gap parameter by the supercurrent. Mathematically, we cir-
cumvent a very difficult problem of finding the full Green’s

function and use a powerful analytical method that is appli-
cable even to barriers with an internal structure. Physically
relevant elements of the Green’s function are calculated on
the basis of a perturbation procedure.
We begin by considering an infinite periodic in the

x-direction superconducting !s-wave" system in the clean
limit and in the absence of external magnetic fields. Com-
plete structural homogeneity in the yz plane is implied,
though the transverse dimensions of the system are taken to
be small compared to the London penetration depth in order
to discard the influence of self-induced fields. The S layers
and the barriers occupy the regions Sn"$#a$d/2$nc ,
#d/2$nc% and Bn"$#d/2$nc ,d/2$nc% , respectively !c
"a$d is the period, and n is an integer". This system is
described by the Gor’kov equations !Fourier transformed in
y , z"
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Here 1"1, ' i (i"1,2,3) are the Pauli matrices in the
Gor’kov-Nambu space, &"*T(2n$1) !n is an integer", EF
is the Fermi energy, N(0)"mp0/2*2 is the one-spin density
of states at the Fermi level !p0"mv0 being the Fermi mo-
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mentum", g is the electron-electron coupling constant, U0 is
the barrier potential, t2cos 3 is the cosine of the angle of
incidence at the interface. In the self-consistency equation,
,•••- denotes spatial averaging over atomic-scale oscillations.
!We confine ourselves to the limit p0

#1!a ." Because of the
periodicity, the pair potential obeys the relation ((x$nc)
"((x)exp(in4). The functions G& , F& and their first de-
rivatives G&! , F&! are subject to the usual continuity condi-
tions at the interfaces x"&d/2$nc .
As in the case of a single junction,8 the supercurrent den-

sity can be written as
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where G&
n is the Green’s function of the system in the normal

state. An obvious advantage of this representation is the pro-
portionality of the integrand to the product of the Green’s
functions with x1!Sm , x2!Sn , where m6n , identically
equal to zero in the absence of weak coupling: To calculate
j c in first order in the tunneling probability D , we must take
( in zero order and substitute the expressions for G&

n , G& in
first order in !D !see below".
As we are not concerned with the Green’s functions with

coordinates inside the barriers, in what follows we shall con-
sider only G&(x!Sn ,x!!Sm ;t), F&(x!Sn ,x!!Sm ;t). To
derive the boundary conditions for these functions, we first

solve Eq. !1" for G&(x!Bn ,x!!Sm ;t) and F&(x!Bn ,x!
!Sm ;t). Making use of the full set of the boundary condi-
tions, we arrive at the required relations
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where 7B
("!U0#EFt2(i& . Equations !4" and !5" form a

closed system of exact boundary conditions for the functions
G&(x!Sn ,x!!Sm ;t) and F&(x!Sn ,x!!Sm ;t). In the
limit d→$0, U0→$5 , dU02V"const, they reduce to the
boundary conditions for a periodic )-function potential.
Assuming 7B

(87B2!U0#EFt2, we proceed to the limit
of a low-transparency barrier 7Bd)1. We can now solve
Eqs. !1" and !2" with the boundary conditions !4" and !5" by
means of perturbation theory, with exp(#7Bd)9!D being the
expansion parameter. As expected, in zero order, ( (0)(x)
"(0+nexp(in4))Sn(x) !(0 is the gap in the bulk, and 4 is a
phase shift at the interfaces", and only G&

(0)(x!Sn ,x!
!Sn ;t) and F&

(0)(x!Sn ,x!!Sn ;t) are nonzero. The func-
tions G&(x!Sn ,x!!Sm ;t) and F&(x!Sn ,x!!Sm ;t) with
%n#m%%1 are of order %1 in !D and should be neglected.
The first-order approximation to G&(x!S1 ,x!!S0 ;t), en-
tering Eq. !1", is given by
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function G&
(1)(x !S0 ,x!!S1 ;t), also entering Eq. !1", is obtained from Eq. !6" via the substitution x↔x!, 4→#4. The

normal-state function G&
n(1)(x!S1 ,x!!S0 ;t) is a limiting case of Eq. !6" for (0"0. Note that the spatial dependence of Eq.

!6" clearly indicates that in first order in D only two adjacent S layers contribute to the supercurrent !3".
Now one can benefit from the quasiclassical approximation 7&8&p0%t%$i./v0%t% $ %t%)(Tc0 /EF)1/2% . Inserting ( (0) and

the quasiclassical expressions for G&
n(1) , G&

(1) into Eq. !3", carrying out small-scale averaging, and performing spatial inte-
gration finally yields
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Equation !7" is the desired analytical expression for the dc
Josephson current in clean S/I and S/Sem multilayers, valid
for any p0

#1!a<5 and arbitrary temperatures. We observe
that Eq. !7" does not depend on concrete features of our
model and should also hold for semiconducting barriers with
internal structures of the type considered by Aslamazov and
Fistul in the case of a single SSemS junction.8 For tempera-
tures close to Tc0 , Eq. !7" reduces to the expression first
derived in Ref. 6 for S/I multilayers. Equation !7" is inde-
pendent of the period c . This is a direct consequence of the
already-mentioned adjacent-layer coupling in first order in
D . The period may enter higher-order corrections, when the
effect of subgap current-carrying Bloch states9 comes into
play.
As expected, in the limit a)#0 , Eq. !7" goes over into the

Ambegaokar-Baratoff relation
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To consider the opposite limit p0
#1!a!#0 , one must

transform the sum over & with the aid of contour integration
in the complex & plane !because of the divergence at small
a". After some simple algebra, one arrives at the fundamental
result
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where =(m) is the Riemann zeta function and #0
2v0/2*Tc0 . Equation !9" was first derived in Ref. 6 for S/I
superlattices near Tc0 , but now we have established its le-
gitimacy for superstructures with arbitrary repulsive barriers
in the whole temperature region 0<T*Tc0 . Three remark-

able features are to be noted with regard to Eq. !9": !i" a
strong reduction of j c due to the emergence of the additional
small factor a/#0 !ii" the temperature dependence determined
solely by the factor (0

2(T) in the whole temperature range,
and !iii" the occurrence of >0

1dtD(t) instead of >0
1dttD(t) in

the Ambegaokar-Baratoff regime. These results are a mani-
festation of the nonlocality of the supercurrent in its extreme:
While the product of two Green’s functions in the integrand
Eq. !3" decays at distances on the order of #0 , the actual
range of spatial integration is restricted by two adjacent S
layers only. Thus, for instance, at T"0 we can rewrite Eq.
!9" as
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where P(t)"a/v0t(0
#1(0) is the quasiclassical probability

of finding an unscattered electron with the x component of
the velocity v0t within one S layer during the characteristic
time (0

#1(0). Finally, one must bear in mind that Eq. !9" has
been derived in the clean mesoscopic regime. Considerable
changes may occur in the dirty limit l!#0 !l is the electron
mean free path", when the fall off length of the integrand in
Eq. !3" is of the order of !#0l . Actually, this limiting situa-
tion asks for further investigation.
Now we want to study the effect of the supercurrent on

the critical temperature and the gap parameter, and establish
a criterion of validity of our perturbation-theory approach in
the limit p0

#1!a!#0 . As is always the case in inhomog-
enous superconductors, the critical temperature Tc is given
by the largest eigenvalue of the linearized self-consistency
equation !2". Explicitly, for clean S/I multilayers with thin
(d!min/a,#00) repulsive barriers, such an equation was de-
rived in Ref. 6. Expanded to first order in D!1, it reads
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with a cutoff at the Debye frequency, &D , in the sum over &
implied. The restriction on spatial integration by two adja-
cent S layers is again a result of the first-order approxima-
tion. For a)#0 , Eq. !10" goes over into the very familiar
equation for a single SIS junction.10 The analysis
of Eq. !10" in the limit p0

#1!a!#0 shows that in the
current-carrying state its largest eigenvalue corresponds to a
complex (, constant in each S layer with a phase shift
4 at the interfaces. !Physically, but for the phase jumps 4
no spatial variations can occur in the small-scale-averaged
( over distances less than #0 ." Thus, substituting
((x)"const+n"#1

1 exp(in4))Sn(x) yields

Tc"Tc0exp"#
1

N!0 "%g% &0
1
dtD! t "!1#cos4"# , !11"

where Tc0"2&D (?/*)exp$# 1/N(0)%g%% !? is Euler’s con-
stant". The occurrence of the depairing factor >0

1dtD(t)(1
#cos4) in the exponent of Eq. !11" is quite unusual for weak
superconductivity and signifies a strong suppression of Tc by
the Josephson current. In this case, the influence of the Jo-
sephson current can even be regarded as effective weakening
of the electron-electron coupling constant:

%g%→%g%"1#&
0

1
dtD! t "!1#cos4"# .

$Analogous renormalization of %g% owing to pair breaking is
known for proximity-effect S/N bilayers in the so-called
Cooper limit.11 The expression for Tc in these structures is in
a one-to-one correspondence with our Eq. !11".% By virtue of
the BCS Ref. 12 relation %((0)%"(*/?)Tc , we expect for
the gap at T"0 the dependence

%(!0 "%"(0!0 "exp"#
1

N!0 "%g% &0
1
dtD! t "!1#cos4"# . !12"

Thus the effect of the Josephson current on Tc and %(% is by
no means small unless the condition

&
0

1
dtD! t "!N!0 "%g% !13"

is fulfilled. At the same time, Eq. !13" gives the desired
criterion of the validity of our perturbation-theory approach
in the limit p0

#1!a!#0 . To conclude the discussion of Eqs.
!11"–!13", we remark that as far as no specific features of the
thin-barrier case enter these relations, they should also hold

for any periodic structures with realistic finite-size repulsive
barriers !S/Sem multilayers".
Summarizing, we have constructed a fully microscopic

self-consistent theory of the dc Josephson effect in clean S/I
and S/Sem multilayers. Reformulating the problem in terms
of the relevant Green’s functions and applying perturbation
theory at an early stage of calculations, we managed to de-
rive an explicit analytical expression for the Josephson cur-
rent as a function of the S-layer thickness a(p0

#1!a<5),
valid at arbitrary temperatures $Eq. !7"%. In the limit p0

#1

!a!#0 , we found fundamental differences with single-
junction behavior, inherent to nonlocal nature of the Joseph-
son current: a strong reduction of j c and unusual tempera-
ture dependence $Eq. !9"%. In the latter limit, we also
obtained exponential decrease of Tc and %(!0"% due to depair-
ing effect of the Josephson current $Eqs. !11" and !12"% and
checked the self-consistency of our calculations $Eq. !13"%.
Our results may have important conceptual implications

in physics of superconducting multilayers with Josephson
coupling. For example, they establish a quantitative limit on
decreasing the S-layer thickness in vertically stacked
Josephson-junction arrays intended for superconducting mi-
croelectronic circuits of high integration,3 if one looks for
large values of j c . Concerning high-Tc superconductors with
the intrinsic Josephson effect such as Bi2Sr2CaCu2O8, it is a
common practice4 to estimate %(!0"% and the temperature de-
pendence of j c on the basis of the Ambegaokar-Baratoff re-
lation !8". In view of the extremely thin CuO2 double layers
(a"3 Å), believed to be superconducting, one may question
the legitimacy of this approach. Moreover, one cannot alto-
gether exclude a possibility of gap measurements from I-V
characteristics being affected by the tunneling supercurrent
$if the transport current perpendicular to weak links exceeds
j c , this effect must be even more pronounced than given by
Eq. !12"%. Finally, the above-discussed effects, resulting from
spatial nonlocality combined with periodicity, must qualita-
tively hold also for anisotropic !d-wave" pairing. However,
in this case the enhancement of predicted suppression of j c
and Tc is to be expected because of pair breaking by the
interfaces themselves.13
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