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Abstract: A comprehensive theory is developed for the chiral optical response of two configurations
of the N-oscillator Born—-Kuhn model (NOBK): the helically stacked and the corner stacked models.
In the helical NOBK model, there is always a chiral response regardless of the value of N, whereas
in the corner NOBK, only configurations with even N demonstrate a chiral response. Generally, the
magnitudes of optical rotatory dispersion (ORD) and circular dichroism (CD) increase with N when
the parameters of each oscillator are fixed. In cases of weak coupling, the spectral shapes of ORD
and CD remain invariant, while strong coupling significantly alters the spectral shapes. For large
damping, the spectral amplitude becomes smaller, and the spectral features become broader. In the
presence of small damping, strong coupling introduces degeneracy in the coupled oscillator system,
leading to multiple spectral features in both ORD and CD across the entire spectral region. This
simple model can not only help in the design of tunable chiral metamaterials but also enhance our
understanding of chiro-optical responses in structures with different configurations.

Keywords: Born—-Kuhn model; chiral plasmonics; chiral structures; chiral optics; circular dichroism;
optical rotatory dispersion; coupled oscillators

1. Introduction

Chiral metamaterials—the artificially created structures that use subwavelength build-
ing blocks to break the reflection symmetry—exhibit strong optical activity and possess
chiral optical properties. The importance of chiral metamaterials lies in their ability to
manipulate the polarization state of light and enable new functionalities that are not readily
available in naturally occurring materials. By designing chiral metamaterials with tailored
optical responses, researchers can develop novel devices such as circular polarizers [1],
chiral lenses [2], and chiral absorbers [3] for applications in various fields, including op-
tics, telecommunications, sensing [4], and imaging [5]. Understanding the chiral optical
properties of these metamaterials is essential for harnessing their potential in practical
applications. Chiral optical properties arise from the difference in the interaction of left-
handed circularly polarized light (LCP) and right-handed circularly polarized light (RCP)
with the metamaterial structures. When illuminated with circularly polarized light, chiral
metamaterials induce a phase or absorption difference between LCP and RCP components,
leading to a net optical activity characterized by optical rotatory dispersion (ORD) and
circular dichroism (CD).

Numerical calculations are essential for understanding complex chiral structures
and predicting their optical responses. Various methods, such as the finite-difference
time-domain (FDTD) calculation [6], the finite element method (FM) [7], discrete dipole
approximation (DDA) [8,9], and rigorous coupled-wave analysis (RCWA) [10], are com-
monly employed for such simulations. Numerical modeling allows researchers to optimize
the design of chiral metamaterial structures for specific applications. However, interpret-
ing the results and establishing a clear physical picture linking the calculated outcomes
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to the intricate structures can be challenging due to the complexity of the systems and
numerical algorithms.

Recently, the Born—-Kuhn (BK) model has emerged as a promising approach to address
this challenge [11,12]. The BK model considers spatially stacked coupled oscillators with
different orientations, providing a classic framework to predict the optical activity of chiral
molecules. This model treats electrons in a molecule as damped Lorentzian oscillators
subjected to an external electromagnetic wave, and it has been successfully applied to ex-
plain the chiral response of two perpendicular corner-stacked nanorods [13]. A generalized
version of the BK model was later presented for stacked plasmonic nanorods with arbitrary
azimuthal angles or polarization directions, enabling accurate predictions of optical and
non-optical activity for various two-nanorod systems [14]. The BK model has also been
extended to study chiroptical properties in systems with non-linear coupling, incorporating
perturbative terms for each oscillator [15]. In a recent work, a systematic comparison
between the BK model and the FDTD results has been conducted, demonstrating that these
methods can successfully predict the chiro-optical properties of corner-stacked plasmonic
nanorods [16].

However, in more complicated experimental scenarios, a greater number of oscil-
lators has to be considered. For instance, Larsen et al. fabricated a triply stacked Ag
oligomer with dielectric spacer layers in-between each of the Ag layers [17]. According to
the correspondence principle from the BK model to plasmonic structures, each Ag layer
can be treated as a damped harmonic oscillator, leading to a 3-oscillator BK model for the
entire oligomer structure. In more complex scenarios, the number of plasmonic layers
can be increased further, giving rise to an N-oscillator BK model. For example, in the
Au-nanoparticle-decorated DNA structures, a chain of Au nanoparticles was arranged in
a chiral manner around a central axis [18,19]. In this case, each Au nanoparticle acts as a
damped harmonic oscillator, and the entire Au-nanoparticle-decorated DNA structure can
be represented by an N-oscillator BK model. Moreover, Song et al. experimentally real-
ized Au-nanoparticle-decorated double helical DNA structures [20], introducing additional
complexity in configuration to the analogous BK model. Thus, it becomes important to theo-
retically extend the previously discussed 2-oscillator BK model to an N-oscillator BK model
and investigate how the number of oscillators and the coupling among them influence
the chiro-optical property. Experimental observations also indicate that the N-oscillator
BK model may exhibit different oscillator configurations, which can significantly impact
the resulting chiro-optical response. Therefore, it is expected that a systematic theoretical
exploration of N-oscillator BK model holds great promise in providing valuable insights
into the behavior of chiral structures with multiple oscillators and offers opportunities to
elucidate the intricate mechanisms underlying their chiro-optical properties.

Here, we present a general theory for N-oscillator Born—-Kuhn (NOBK) models with
two different configurations: the helically stacked and corner stacked models. The exact
analytic expressions for the ORD and CD responses in these models are derived, and their
chiro-optical spectral features have been investigated systematically for different damping
and coupling situations.

2. N-Oscillator Born—-Kuhn Models

We consider two kinds of N-oscillator Born—-Kuhn (NOBK) models, the helically
stacked and corner stacked NOBK models as shown in Figure 1. As shown in Figure 1a,
the helical NOBK model starts from an oscillator (blue, indicated by displacement x1)
aligned with the positive x-axis. Moving up along with the z-axis, the second oscillator
(red, displacement y5) is parallel to the positive y-axis, then the third oscillator (blue,
displacement x3) is anti-parallel to the x-axis, the fourth oscillator (red, displacement ) is
aligned with the negative y-axis, and so on. Between the two adjacent oscillators, there is a
coupling interaction, denoted by the dashed lines in the figure. Looking along the positive
z-axis, all the oscillators are arranged to rotate counter-clockwise in Figure 1a. Clearly, a
clockwise configuration can be designed as well. Both the clockwise helical NOBK and
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counter-clockwise helical NOBK models are mirror images of each other, and form a pair
of enantiomers. For the corner stacked NOBK model shown in Figure 1b, the oscillators
are arranged alternatively along the x- and y-axis, all the x-oscillators are aligned with
the positive x-axis, while all y-oscillators are parallel to the y-axis. When the number of
oscillators N is even, its mirror image is its enantiomer. However, if N is odd, it can be
transformed into its mirror image by two rotations. For example, when N = 3, one can
rotate the structure in Figure 1b 90° clockwise around the z-axis, and then rotate it by
180° about the y-axis to obtain its mirror arrangement.

(a) Z4 Xs (b) T4
RaAAAL imd
Jooooo o [ 2.
AR
2y TTTIY Y@ —
; 8/ Xs
m e
X; >l 2 GAT?
S W I(‘(Y‘f‘f‘{/‘_,
—_— \\ Jv Y 00S
dI / }Jﬁ{j\ "
i d o
MAM‘\* Y \

i = ¥ X

Figure 1. Schematic representation of (a) helically stacked and (b) corner stacked N-oscillator Born—
Kuhn models. In the illustration, all the blue oscillators are either parallel or anti-parallel to the x-axis,
while all red oscillators are either parallel or anti-parallel to the y-axis.

Using the convention in which positive displacement always corresponds to particle’s
motion in the positive direction of either x- or y-axis, and restricting consideration to
identical damping coefficients 7, identical resontant frequencies w3, as well as identical
nearest-neighbors coupling constants g, the equations of motion for the oscillators in the

helical NOBK model are

(t)

(t)
X3+ %3+ wyx3 — gy2 +8ys = f3(t) (1)
Yy + vy + Wiys + X3 — gx5 = f4gt§ '

where the alternating ¢ on the left-hand side are due to simple physical considerations,
and there are N equations corresponding to N oscillators in the system. Since our primary
interest is in the system’s gyrotropic response, we assume harmonic drive in the form of a
plane electromagnetic wave of frequency w and wave number k propagating in the positive
z-direction,

f(t) Exo

fa(t) Eyoe’*?
¢ _ E eZikd 4

:Zét; _ (—4e) Exge:”ikd efz(wtkao)/ )
(t) Me E etk
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where g, and m, are the effective charge and mass parameters characterizing the oscillating
charge distributions. Applying the solutions,

x1(t) uq

ya(t) up

x3(t> us —i(wt—kz

ya(t) | = g | 3)
x5(t)

Equation (1) can be cast in a matrix form with steady-state solutions (i.e., all the e~ ! terms

are dropped off),
uy Ex() .
Uy Eyoe”"d
u | (o) | Becl
AN Uy = T E 0€3lkd ’ (4)
s ¢ E. o ohikd
x0
with
0> ¢ 0 0 0
g O - $ 0 0
0 - O ¢ 0 e
0 e

0 0 -—g 02

where O = w(z) — w? — iyw. Note that the Ay in Equation (5a) is for a counter-clockwise

helical NOBK. For a clockwise helical NOBK, Ay changes to

0> —¢g 0 0 0
¢ O ¢ 0 0
0 g O —g 0

QZ

In the following discussion for helical NOBK, we will focus on Equation (5a), the counter-
clockwise helical NOBK.
For the corner NOBK model (Figure 1b), the equations of motion can be written as

X1+ yx1 + whx + g2 = fi(t
Uy + 7Y, + Wiy2 + gx1 + gx3 = fo(t
X3 + Y¥3 + wixs + gy2 + gy = f3(t
Uy + 1Yy + wiys + gx3 + x5 = fa(t
X5+ yia + Wixs + gya + g6 = f5(t

)
|
) (6)
)
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and the steady-state solution for Equation (6) can also be written in matrix form with

Q> ¢ 0 0 0
g 02 g 0 0
0 g O ¢ 0
0 0 0 g 02

The Ay for the mirror arrangement of Figure 1b about the x—z plane can be written as

0 ¢ O —¢ 0 X
AN=10 0 -g 0 —g - | (7b)
0

Similarly, below, we will only focus on Equation (7a), i.e., the structure in Figure 1b. The
general solution for Equation (4) can be written as

uq Exo

Un Eyoé’ikd

U3 Ex0€2ikd

m _ ﬂAﬁl Eyoe3ikd ‘ 8)
Us M, Ex0€4ikd

Ug Ey0€5ikd

According to Appendix A, if ¢l,j is the element of the inverse matrix Agjl, then

Je v-N i(—1)kd _ _ e (M 1)kd i(2j—1)kd e
_mjzj:l‘l’l'fEfe(] ) __m@[zi—% P12 1)° 2(j-Dkdp +Z 14’1 (2j-1) Eyo _me(ulx+uly>. ©9)

where the symbol {M} or {g] means taking an integer less or equal to the term in

N+1
(1, uy = Z/[ P ojo)e el2G-DKE andZ 21<pl ie' i(2j—1)kd 40 For both the helical and

corner NOBK models, the induced polarlzatlon can then be found as [21,22]

p, — @2y I(N-172)

—1 N-1)/2 ! —i
= Wplu—o 41 (F1) e HE = = w; z[(:o ) ](”(zzﬂ)x +“(2l+1)y)($1) e~ k@d, (10)

I+1

N/2 i N/2 i
P, = w), l[:l]uzz(¥1)l+1 D = = wj 1[1](”(21)x+”(21)y)($1) e~ k2T, (11)

P, =0, (12)

where wp = Oq‘ , g is the bulk concentration of NOBK molecules. The “—" sign is for the
helical NOBK model and the “+” sign is for the corner NOBK model. Insert Equation (9)
into Equations (10) and (11), and one has

Py = xxxExo + XxyEyO and Py = xyxExo + nyEyO; (13)
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with

221 [(N—1)/2] Z[(_N+1)/2 ( pi(2j—21-2)kd

Xxx = W F1) P, 05-1)
Xy = prI ; N-1)/2] Z N/2 ( )14)(2”1),(2],) oi(2j—21-1)kd
Xyx = pr;N/z Z][ N+1 /2] (:’:1)1+1¢(21)’(2j71)ei(2j—21—3)kd
Xyy = przN/z Z]N:/12 (451)lH‘P(zl),(zj)ei(2j_21_2)kd
The exact expressions for polarization as a function of kd become rather cumbersome

and not very illuminating for N > 2, which motivates us to use the quasi-static (long-
wavelength) approximation, kd < 1, and keep only linear terms in kd,

(14)

Xxx = w%Zl[(:Nfl)/z] Z[(Nﬂ)m (3F1)1<P(21+1),(zj71)
Xy = 2000/ ZM (F1)'par 1,2y [1 +(2 — 21 — 1)kd]
Xyr = 2P Tl <N+”/2] (FV P o1y [1 + (2] — 2 — 3)kd]
Xoy = pr[N/Z] Z[N/z] (F )1+1¢(21),(2j)

(15)

Since ¢;; = ¢;, for both helical and corner NOBK models, according to Equation (15),
Xxy and xyx can be written as [16,21,22],

Xxy = ng — ikI" and Xyx = ng + ikT, (16)
with (N-1)/2) (N2
Xy = Xyx = “’zdez Z] (1) ‘P(zz+1 ),(2j)7 (17)
[(N—1)/2] y—~[N/2 .
_wdel 2 L) Po141),02j) (21 — 21 = 1), (18)

where I' representing chiral induced polarization. If we only consider the chiral effect, after
averaging in three-dimensional space, we obtain

wWid L (N_1)/2] «IN/2 .
Tp 1[(:0 ) ]Z[ L) Po141),(2j) (21 — 21 = 1). (19)

r=—

The chiral optical response of a chiral medium is determined by three optical param-
eters: the index of refraction, ORD, and CD. The index of refraction for RCP, denoted as
n4, and LCP, denoted as n_, are distinct and can be represented as [16,23] ni =72+ K7
with 77 being the average index of refraction and « is the gyration. In the limit of x < 7,
An = ny —n_ =~ x, which is determined by x. According to [22], ¥ ~ ¢TI with v being
the speed of the electromagnetic wave in vacuum. The ORD and CD can be calculated
as follows,

NZ
ORD = A¢p = “’—LRe(An) ~ Z—Re(r) (20a)
l
2wL 20
CD = AA = == Im(An) ~ Zo-Im(T). (20b)
(9] Ul

where A¢ is optical rotation angle, AA is the change in the absorbance of the spectra due
to the LCP and RCP incidence, W = w%' v = wio, and L is the path length of the medium.
Since we can treat both v; and L as constant, we can define the effective ORD and CD
responses,
2
!

~2
Orp = —L x ORD = @ Re(T), (21a)

i
Co=5r xCD=w > Im(T). (21b)
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In the following section, we will discuss in detail how different NOBK models, the number
of oscillators, and oscillator parameters affect the effective ORD and CD responses.

2.1. The Helical NOBK Model
For the helical NOBK model, according to Appendix A, ¢ ; can be written as
j(i=0-10-1) sin(lo)sin[(N + 1 — j)o]
= (=12 22
$1j= (1) gsinosin[(N 4+ 1)0] ’ (22)
where o = cos’l(%). Thus,
2 . . .
w5d _ .y I+1 N +1—2j)o]
_ _PONIIN=D /2D N (NJ2L N j(2j-1) 11 H i oy sin((2/ + 1)o)sin( 7)
r 3 Liso Zle ( 1 (2j=21-1) gsinosin[(N + 1)0] ' @3
. dw? sin[o] dwy 1 dw} 1
LetuslookatwhenN=2,/=0andj=2,s0,I' = —* Zinpo] = ?;m = —;W =
3

dw? .
% ﬁ Table 1 shows the calculated xxx, Xxy, and I for some representative even N and

odd N helical NOBKs respectively. We notice that when N is even, the expressions for )y,
Xxy, and I become more complicated, while for odd N they are much simpler. Note that
Xxy = Xyx-

Below, we will give an extensive discussion on how both ORD and CD change with N
under different damping and coupling constants. To make all the quantities comparable,

2 ~ o~
wlo,andc:ﬁ,thus%zl—w —ibw.

0 @

wesetb =
(1) Large damping

In cases where b is large and c is small, corresponding to weak coupling (g < QZ> ,
the expressions in Table 1 yield

T _(N—l)gd
04

i.e., according to Equations (21a) and (21b), the functional shapes of both Orp and Cp

, (24)

with respect to w remain unchanged. Only the magnitudes of Ogp and Cp experience a
linear increase with N. Figure 2a,b show the plots of Orp and Cp versus w forb = 0.5
and ¢ = 0.001 at N = 2 to 9. The overall magnitudes of |Ogp| and |Cp| are smaller than
0.035. As expected, the overall amplitudes |Ogrp| and |Cp| increase with N. Ogp exhibits
a primary peak and attains a maximum value at wym = 1. At w,+ = 0.78 and 1.28, Ogp
reaches zero. These two zero positions are slightly asymmetry about wj; = 1. Beyond
these two (TJZ:F values, Ogp is negative. Thus, for a fixed ¢ with the increase in N, this
Orp peak becomes sharper. On the contrary, Cp exhibits a bisinuate line shape. At
w = 1, Cp = 0. This observation is consistent across all values of N, b, or ¢, since at

~ 2 L~ . . . .
w=1, % = —ibw and according to the expressions for I in Table 1, the I value is real.
0

Regardless of N values, at w_ = 0.866, Cp reaches a negative dip, while at w; = 1.155,

~

Cp achieve a positive peak. At these two extreme locations, Cp (w,) =Cp (ctu) , while

1—w- =0.134 < w; — 1 = 0.155, there is slight asymmetry in the Cp spectrum about
wy = 1. The slight asymmetric spectral shapes about wy; = 1 in both Ogp — w and
Cp—w spectra are due to strong damping.
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Figure 2. The plots of (a) Ogp — @ and (b) Cp — w for b = 0.5 and ¢ = 0.001 at N = 2 to 9. The 2D
maps of (¢) Orp and (d) Cp with 0.01 < ¢ < 0.6 for N =6.

In addition, Orp and Cp are both influenced by the coupling strength c. Figure 2c,d
present two-dimensional (2D) map plots of Orp — wand C D — @ with varying c¢ from 0.01

t0 0.6 for N = 6. Several features can be seen: (1) The peak intensity of Ogp — w consistently
increases with ¢, as indicated by Equation (24), I e c. (2) The Orp peak exhibits increased

broadening with higher c values. (3) The separation of the negative dip location w_ and
positive peak location w for Cp increases with c. In more detail, Figure 3a shows plots of

Ogrp and Cp versus wforb=05and c =0.2atN =2 to9. The overall spectral trends with
N look similar to those of Figure 2a, while more detailed inspection shows some interesting

differences. The maximum location wy; of Ogp — @ spectra shifts slightly for different
N: N =2-5, @ M = 1.004; when N increases to 6-9, w M = 1.002. The zero-crossing locations
W+ do not stay the same, rather they vary with N: the top of Figure 3c (red data points
for ¢ = 0.2) plots (TJZi — 1 versus N, and the two blue lines outline the J}zi locations for

¢ =0.001. It appears that except for N = 2, with the increase in N, the &zi valuesatc = 0.2
approach the corresponding values at ¢ = 0.001.
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Table 1. The resulting xxx, Xyy, Xxy, and I expression for helical NOBK models.

N Xxx=Xyy Xxy r
2 =0 _8 gd
2O 2Ot g2
. 02 (—58+20%) 3¢ g0t gd(582—30")
¢-3g204+08 gt-3920*+08 ¢-3g204+08
6 0?(-14g*+14g°0* -300°%) g(68*—5820*+0) gd(14g*—21820*+50°)
$6—6g*0*+58208 -0 §6—-6g*0*+5¢20° -0 §6—6g*0*+5820° 0"
8 0*(-30g°+54g*0* —27¢%0° +40'%) 3(28>—0*) (58" —5820*+0°) 3d(30g°—81g*2*+45¢°0° —70"?)
gs710g604+15g40877g2012+016 gs710g604+15g40877g2012+()16 gs710g604+15g40877g2012+016
10 02 (—55¢%+154°02 —132¢* 0% +4492012 —501%) g(15g°—35g°02* +28¢4 1% —92012+0)'°) 9d(55g° —231g°0* +220¢*0* 7720112 +90)'¢)
¢10-15¢80*+35¢600% —28¢40112 4902010 — 0% g10-15¢80*+35¢600% —28¢40112 492010 — 0% g10-15¢80*+35¢600% —28¢40112 492010 — 0%
3 % —0? 2gd
QO 2¢2-O* 2¢2-O*
3 202 4gd
5 o g23%4 g2§Q4
7 4 0*(30*-10g%) 2gd(10g*—300*)
Q 2¢4—4g20*+ 08 2¢4—4g20*+ 08
2 4 4
9 5 207 (20* ~5¢2) 4gd(582-20")
Q g-3g20t+0f

43820 +0°
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Figure 3. The plots of Ogp — @ and Cp — watN=2to9forb =05 and (@) c =0.2and (b) c = 0.6.
(c) The plots of w>+ —1and Z); — 1 versus N for ¢ = 0.2 (red) and 0.6 (black), respectively.

All the Cp — w spectra maintain the bisinuate line-shape, but both w_and Wy vary
with N. The bottom of Figure 3c (red data points for ¢ = 0.2) plots w+ — 1 versus N
with the two blue lines indicating the w= locations for ¢ = 0.001. Similar trends like
w2+ versus N are observed for w+. In addition, the ’CD (c?z_> ‘ is always smaller than
o (@)
_ ol rco(s)
" Teo(a ) [Hlen @
0.0658, 0.0458, 0.0339, 0.0279, 0.0224, 0.0193, and 0.0167 for N =2 to 9, respectively. Except
for N = 2, the 7y value decreases monotonically with N, showing that the spectral shape of

, further demostrating the asymmetric spectral shape. If we define a parameter

to caharcetrize the degree of asymmetry, we obtain ¢ = 0.0339,

Cp — w becomes less asymetric.
As the coupling strength c increases to 0.6, indicating a scenario of strong damping and

strong coupling, both Ogp — w and Cp — w spectra for N = 2 to 9 closely resemble those at
¢ = 0.2, with distinct w M, szi, and ct)i for a fixed N, as shown in Figure 3b. For N =2, 4, 6,
and 8, both the Orp — @ and C D— w spectra are quite similar to those shown in Figure 3a.
Detailed inpsction shows that wy; shifts significantly away from wy; = 1: wy = 1.078,

1.031, 1.019, and 1.014 for N =2, 4, 6, and 8, respectively, i.e., w M decreases monotonically
with even number N. The Ogp spectral shapes become more asymetric compared to those
of c = 0.2. However, for odd N, the spectral shapes are highly skewed. For N = 3. The peak

atw = 1is very broad with Ogrp value at w<1 significantly smaller than that at w > 1.
With the increase in N, the peak becomes narrower, but still skewed, with left-side Orp

values smaller than right-side Orp values. Only when N =9 does the Orp — w spectrum

become more symmetric. In addition, for N=3,5,7,and 9, w Mm = 1.166,1.078, 1.038, and
1.021, also decreases monotonically with odd number N. Similar behaviors are observed
for Cp spectra: for even Ns, the change in Cp spectra versus N seems continuing the trend
from Figure 3a, while for odd Ns, the spectra become highly asymmetric.

The black data points in Figure 3c (top figure) show the relationship between w,+ — 1
and N for ¢ = 0.6. Both &Zi are quite far away from the &Zi locations at ¢ = 0.001. Except
for N =2, (:/724'_ — 1 approaches 0.28 (the ¢ = 0.001 value) monotonically with the increase
in N; similar relationship is observed for w — 1 in the bottom of Figure 3c. For w,_, no
monotonical trend is observed. However, for w_ — 1, depending on whether N is even or
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odd, it seems to follow two monotonically increasing trends as indicated by the dotted and
dashed purple curves (guides for eyes). The degree of asymmetry of the Cp spectrum is also
characterized by v, with v = 0.253, 0.178, 0.175, and 0.149 for N =2, 4, 6, and 8, respectively;
as well as vy = 0.475, 0.252, 0.162, and 0.113 for N = 3, 5, 7, and 9. Therefore, the v value
decreases monotonically with even or odd N. This shows that with the increase in N, the
chiro-optical response spectra will become more symmetric. Note that for ¢ = 0.6, all the ¢
values are almost one order of magnitude large than those at ¢ = 0.2, indicating that stronger
coupling between adjacent oscillators will induce more asymmetric chiro-optical response.

(2) Small damping

Figure 4 plots the selected Orp — wand Cp — w relationships for N =2 to 9 at b = 0.01
and ¢ = 0.001, 0.2, and 0.6, respectively. In the scenario where ¢ = 0.001 <« b = 0.01,
corresponding to small damping and weak coupling, both Ozp — w and Cp — w have
the same spectral shape as shown in Figure 4a. The Ogrp — w spectra are symmetric
about w = 1, with w M = 1.00 for all N, and only two fixed zero-crossings locations are

observed, with cTJZ, =0.995 and (TJZ+ =1.005, both symmetrically located about w m=11In
addition, the Orp spectra are notably sharper than those in Figure 2a and the corresponding

maximum values (Orp (5} = 1) ) are in the order of 10-80, significantly larger than those in

situations with larger damping. For Cp — w spectra, only 1 pair of w_ and w  are observed
atw_ =0.997 and w, = 1.003, regardless of N, also symmetrically located about wy; = 1.
Furthermore, we observe that ‘C D (&3_> ‘ = ’C D ((:ur) ‘ The small separation between w_

and w results in a small spectral span in Cp but much greater magnitudes compared to
Figure 2b. The magnitude of both Ogrp and Cp increases monotonically with N.

(c)b=0.01,c=0.6

(a) b=10.01, c = 0.001 g (0)5=0.01,¢=0.2

500
400 F
300 F j
200F ; !
100 F

ORD

-100 |
-200

-300 F
800

600 [
400 |

o 200F

oF

-200

-400

-600

00 02 04 06 08 10 12 14

w

Figure 4. The plots of Orp — wand Cp —w at N =2 to 9 for b = 0.01 and (a) ¢ = 0.001, (b)c=0.2,
and (c¢) c = 0.6.

When c increases to 0.2, the spectral features in both Orp — wand C D— w relationships
become more complicated as shown in Figure 4b. For N = 3, 5, 7, and 9, the Ogp — w

spectra share a similar shape, featuring a positive curved band centered around w = 1 and
two large negative dips near each zero-crossing location, with the width of the central band
decreasing with N. For N = 2, 4, 6, and 8, the central bands are relatively narrower than

their N + 1 counterparts. While the spectrum is asymmetry about w = 1, there are [N /2]
Zero crossings in w>Tland w < 1 regions, respectively. Near each zero crossing, there
is either a negative dip or a positive peak. Similar features are observed for the Cp — w
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relationship: For N =3, 5,7, and 9, there is only a negative dip at w<1landa positive peak
atw > 1, with specific (w_, w ) pairs being (0.845, 1.135), (0.895, 1.095), (0.920, 1.075), and
(0.935, 1.060), respectively. For N =2, 4, 6, and 8, [N /2] positive peaks and N /2 negative
dips are evident in the spectra. Specifically, for N =2, w_ and w; appear at 0.895 and 1.095;
for N = 4, two negative dips occur at 0.935 and 0.82, and two positive peaks at 1.06 and 1.15;
for N = 6, there are three negative dips at 0.865, 0.955, 1.165, and three positive peaks at 1.12,
1.045, 0.80; for N = 8, four dips are at 0.965, 0.895, 0.79, and 1.145, and four peaks at 1.035,
1.095, 1.175, and 0.835. Clearly, the number of peaks/dips in the Cp plots corresponds to
the number of zero crossings in the Ogp plots.

~

As ¢ increases to 0.6, signifying a strong coupling case, the Orp — w and Cp — w
relationships become even more complicated as shown in Figure 4c. All the Ogp and Cp

spectra become markedly asymmetric, with espectral features stretched in w < 1 region.
For N=2,3,4,5, 6,7, and 8, both the Orp and Cp spectra closely resemble those at
¢ = 0.2, yet with increased asymmetry and expanded separations of relative peaks or dips.

However, for N = 9, two zero-crossing locations emerge for Orp at w < 1 and for Cp,
negative dips appear at 0.79 and 0.17, accompanied by two positive peaks at 1.17 and 1.4.

To better understand the observed splitting behaviors for different values of c, Figure 5
presents the 2D maps of Cp — w as c varies from 0.001 to 0.6. The darker line-like features
in the plots represent sharp dips while the bright curves represent sharp peaks. Initially, all
maps exhibit one dip and one peak at very small ¢, and depending on N and ¢, these dip
and peak split into multiple dip and peak lines. For N =2, 3,5, and 7, the dominate features
in the Cp maps consist of one dip line and one peak line at @ < 1and w > 1, respectively.
With the incease in ¢, the separation between w_ and (Tur increases monotonically. However,
for the same ¢, the w_ and cTJ+ seperations become smaller with increased N. In contrast,
for even N (>2), multiple dips and peaks emerge. For example, for N = 4, two distinct dip
lines appear at w < 1 and two peak lines occur at w > 1. These four lines remain in both
N =6 and N = 8 maps. But in the N = 6 map, a faint peak line emerges to the left of the
second dip line, and a very weak dip line appears to the right of the second peak line. For
N =8, compared to N = 6, a very weak dip line is added on the far left, while a weak peak
line is introduced on the far right.

N=4 N=6

0.5 0.5

0.4 04

03 03
02 02

0.1 0.1

w w
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0.5 0.5
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Figure 5. The 2D maps of Cp — w for ¢ = 0.001 to 0.6 at different N.
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The splitting of the peaks/dips for large c arises from the degeneracy of the coupled
oscillators in a weak damping case. When c is very small, the dominant oscillation modes
in the NOBK system are the bonding and anti-bonding modes. As discussed in [16], the
w_ and w; correspond to bonding and anti-bonding modes of the system for N = 2. In
fact, as c increases, the stronger coupling between two adjacent oscillators leads to the
degeneration of oscillation modes. Since b is very small, the NOBK system can be treated
as N-coupled harmonic oscillators with an intrinsic frequency of wy. Due to the coupling,
the new collective oscillation mode wj becomes [24],

w

~ Wi ko
wk—w—g—leCcos(N_i_l),k—1,2,~--,N. (25)

By numerically examining the negative dip and positive peak locations of Cp, we find
that these locations are exactly corresponding to all the collected modes wy, for N = 2m
and some selected modes for N =2m + 1, where m =1, 2, 3,... In fact, an equation (:Jk =
/T = 2ac can be used to fit all these w locations, with a; = cos (Z\%l), k=1,2,...,m For
N =2m, according to Equation (25), there are a total of 2m resonant modes emerging, which
correspond to the m dips and m peaks shown in the top row of Figure 5. By fitting these
locations, we find that each of the collective modes gf the N = 2m BK oscillators can exhibit
a chiral response. For N =2m + 1, when k =m + 1, wy,41 = 1, meaning that each oscillator
in the NOBK model vibrates with its own intrinsic frequency, results in the absence of a
chiral response. Therefore, for N = 3, only two chiral modes with 511 = V14 v2c and
(;13 =+/1—+/2care present. For N = 5, except for the (TJerl = 1, only when the modes of
(7)2 =+/1+cand (7)4 = /1 — c demonstrate chiral response, which is consistent for when
N =2. For N = 7, we found four a values, a7 = £cos(Z) and a35 = Fcos(3), which
correspond to &1 and &7, 523 and &5 modes, with chiral responses. For N =9, also only

four modes have active chiral responses, 428 = :I:cos(z—g) and a46 = icos(%), due to

w, and wg, wy and we modes. Thus, for N = 2m + 1, all modes (’;m_}rliz]‘ with j < [%]

do not exhibit chiral response. Such a result is due to the intrinsic mirror semmetry of
the collective osscilation of these modes. Let us take N = 5 for example, the eigen vectors

for wy — ws are {1, V3,-2,—/3, 1}, {-1,-1,0,-1,1},{1,0,1,0, 1}, {1, 1,0, 1, 1},
and {1, —3,-2, /3,1 }, respectively. The clearly eigen vector for &3 shows non-zero

x-component oscillators, and they are on the same plane, while the eigen vectors for w1

and ws are mirror vectors about the x—z plane: the amplitudes for the first y-oscillator and
second y-oscillator are interchangeable. Therefore, these two modes do not show chiral

response. Similar features are observed for the eigen vectors for w; and wg for when N =7,
and eigen vectors for wi and wy, w3 and ws for when N =9.

2.2. The Corner NOBK Model

For the corner NOBK model, according to Appendix A.2, the element of the inverse
matrix Ay (Equation (7)) can be written as

14jsin(lo)sin((N +1 —j)o)

gsinosin((N+1)o) ' (26)

¢1j=(-1)

Thus,

w?d : . Y
_ W S [(N-1)/2) =N/ . oy 4y SIN((21+ D)o)sin((N + 1 —2j)o)
T=—")io L @j-2-1) s (N 1)) @)

Due to the structural symmetry of the model in Figure 1b, when N is odd, I' = 0.
Therefore, only when N is even, the corner NOBK model has a non-vanishing I', i.e., has a
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chiro-optical response. The resulting expressions of xxx, Xxy, and I for some even N are
summarized in Table 2. Here we also have xy, = xyx-

Figure 6 plots some Ogp — w and Cp — w spectra for different b and c. When ¢ < b,

I =TIy = —é—i and I's = I'g = —i‘)g—f, i.e., the spectral shape of the chiral response for

N =2 and N = 4 are the same, same for N = 6 and N = 8. Figure 6a,c show the Orp — w
and Cp — w spectra for b = 0.5 (large damping) and ¢ = 0.01 and b = 0.01 (small damping)
with the same ¢ = 0.001. For both cases, due to the generancy, only two curves exist.
In fact, on the basis of the above discussion, though the amplitudes of Ogp — w and
Cp — w spectra for N = 2 and 4 are distinct, the rescaled spectral shapes should be exactly
the same, which means both the (TJzi and (TJi are the same for fixed b and c. However,
compared when b = 0.5, the spectra for when b = 0.01 are much narrower, more symmetric,
and have a much greater magnitude in both Orp and Cp. However, when c increases,
all spectra start to degenerate. For example, as shown in Figure 6b, for b = 0.5 and
¢ = 0.2, four different spectra emerge for both Orp and Cp. Similar trend is observed
for b = 0.01 and ¢ = 0.2 as shown in Figure 6d. The behavior of the spectra at high
damping constnat (say b = 0.5) are very similar to those discussed in the chiral NOBK
model (Figures 2 and 3). However, for small damping, the behavior is very different. The
spectral shapes of Ogp — w mimic multiple-band structure. For N = 2, there is a positive
band between w = 0.894 and 1.096. For N = 4, two positive bands appear, one is between
w = 0.823 and 0.936, the other between @ = 1.06 and 1.151. For N = 6, three positive
bands are shown, w = 0.8 to 0.866, 0.955 to 1.043, and 1.118 to 1.167. In between these
positive bands, there are two negative bands. Through Figure 6d, it is interesting to note
that the positive bands in Orp spectra for different N are largely compensate to different
spectral regions with slightly overlaps at the edge. It is expected that by combining helical
NOBK layers with different N and appropriate thickness, one may design a broader band
optical rotator.

(a) (b) (c) (d)
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Figure 6. The plots of Orp — w and Cp — w of the corner NOBK models at N = 2, 4, 6, and 8 for
(a)b=0.5and c = 0.001; (b) b = 0.5and ¢ = 0.2; (¢) b = 0.01 and ¢ = 0.001; and (d) b = 0.01 and
c=02.
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Table 2. The resulting xxx, Xyy, Xxy, and I expression for corner NOBK models.

N Xxx=Xyy Xxy r
2 =0 _8 gd
2O 2Ot g2
4 02(2047g2) g373g04 _ dg(g2+04)
$-3g204+08 gt-3920*+08 g-3g204 408
6 0* (286520 +30°%) 2¢°—9¢30* +5¢08 dg(2g*—g20*+0%)
—g6+6g+0* —5¢205 +01? g0—6¢40*+5¢208 -0 687 158212
8 QZ(_2g6+14g404_15g208+4012) 2g7—21g504+25g308—7g012 dg(2g6+3g404_3g208+012)
8-10g00* +15¢408 —7¢2012 4010 ¢8-10g00* +15¢408 —7¢2012 4010 S1065 0 1151 0° 72012110
10 0?(35°—-268°0* +48¢*0° —28¢20)1*+50)'°) 3¢° 394704 +804°0° —49430112 49401 dg(3g°—3g°0* +8g*0° —5¢202+0'°)

—g10+15¢80)* —35¢60)° +-28¢4 (1% —920)1¢ + O

8101580 +35¢00° —28¢4(0)12 +9g2010 — 0%

§19—15¢801+35¢60°—28¢4012 +9520"° — O
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For Cp — w, there are multiple peaks and dips quite symmetrically distributed around

@ =1, each spectrum has N/2 numbers of peaks and equal number of dips. In fact, both
the adjacent peaks and dips can be treated as a bisinuate line shape, with different zero-

cross locations and corresponding J)i, i.e., there are N/2 numbers of bisinuate lines. For
N = 2, there is only one bisinuate line shape, with zero-crossing location at w, = 1 and
(:}i =1.096 and 0.895. For N = 4, the first zero-crossing location ngl = 1.106 and corre-
sponding (Tzli =1.151 and 1.06; the second zero-crossing at CTJZZ =0.882 and corresponding
cTJZi =0.936 and 0.823. For N = 6, there are three bisinuate line shapes, with ct)zl =1.141,
w1+ =1.167 and 1.118; W = 1, wyy =1.044 and 0.955; and w,3 = 0.836, w3, =0.867
and 0.8. Finally for N = 8, the four bisinuate line shapes are cTle = 1.158, Z;li =1.173
and 1.143; W,y = 1.066, Wy =1.096 and 1.034; w.3 = 0.931, w3, =0.965 and 0.895; and
5}24 =0.812, (:)4i =0.833 and 0.79. If one take w,, = 1 as the reference location and inspect

the Cp responses at @ < 1and w > 1, one can find that the responses of N = 2 and 6 are
exactly out of phase of response from N =4 and 8. Thus, Cp responses of even N /2 models
are opposite to the response of odd N/2 models. Compared to the weak coupling case, the
magnitudes of both Ogrp and Cp are approximately one order of magnitude larger.

3. Conclusions

In conclusion, our work presents a comprehensive theory elucidating the chiral optical
response of two distinct N-oscillator Born-Kohn models: the helically stacked and the
corner stacked configurations. Each model comprises N identical damped oscillators with
uniform coupling strength between adjacent oscillators. Our findings reveal that in the
helical NOBK model, a chiral response is consistently observed irrespective of the value
of N, which is due to the intrinsic mirror symmetry-breaking arrangement. However, the
corner NOBK model exhibits chiral response only in configurations with even N, as odd
N oscillators possess mirror symmetry and do not exhibit chiral response. Furthermore,
our study demonstrates that the magnitudes of ORD and CD monotonically increase with
N when the parameters of each oscillator are held constant. Specifically, we consider two
scenarios: large damping and small damping. In instances of weak coupling, the spectral
shapes of ORD and CD remain unchanged, whereas strong coupling induces significant
alterations in their spectral shapes. For large damping, both ORD and CD exhibit small
spectral amplitudes, with relatively simple and broad spectral features. In contrast, for
small damping, strong coupling introduces degeneracy in the coupled oscillator system,
resulting in multiple zero crossings in the ORD spectrum and multiple peaks/dips in the
CD spectrum. The number of zero-crossings for ORD and peaks/dips for CD is directly
related to N. In particular for CD, the collective eigen vibrations of an even number of
helical oscillators correspond to the dips and peaks observed, while for an odd number of
helical oscillators, only those collective modes with no mirror symmetry eigen vector pairs
can demonstrate chiral response.

This comprehensive theoretical framework can not only enhance our understanding
of chiro-optical responses in structures with similar configurations but also help us design
specific chiral metamaterials. The model can be used to explain the chiral response of
helically and corner stacked chain molecules, such as DNA or DNA like structures [25]. It
can also be used to explain the chiro-optical response of chiral metamaterials. For example,
for the helically Au-nanoparticle-decorated DNA structures shown in Figure 7a [18,19],
since each Au NP can be treated as a damped plasmonic oscillator [13,16], the number of Au
NPs decorated on the DNA will be determined by the length of the DNA. It is expected from
our model that one can change the length of the DNA to change the number N of the Au
NPs, so that the chiro-optical response of the structure can be tuned. Similarly, if one could
tune the diameter of the Au NP, one can effectively tune the damping and coupling between
adjacent Au NPs (due to the change in the gap d between adjacent Au NPs, as shown in
Figure 7a), and, therefore, tune the chiro-optical response. In addition, the theoretical model
can be used to design new chiral metamaterials to meet specific requirements. For helically
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stacked plasmonic materials realized by Larsen et al. [17] or helically stacked plasmonic
bars shown in Figure 7b, the damping parameter b of the Ag layers is experimentally
determined by the thickness and quality of the deposited plasmonic materials and the
intrinsic material properties [26-28]. If the quality of the deposited material is poor, the
damping b will be large, one can observe broad and simple chiral responses like those
shown in Figure 2, regardless of the coupling strength c. However, if high-quality material is
used and deposited, resulting in a small b, then the chiral optical response of the system can
be tuned by the coupling strengths as well as the number of plasmonic layers. The coupling
between adjacent oscillators is determined by the thickness and dielectric property of the
thin dielectric layer between two plasmonic layers shown in Figure 7b. By appropriately
choosing the material and the thickness of the insulating layers (such as S5iO; in [17]), one
can decrease or increase the coupling strength c. Another design parameter is the number of
plasmonic layers, N. Therefore, once the parameters b and ¢ can be experimentally adjusted
to relate to deposition conditions and structural configurations, one can implement the
theoretical equations obtained here to help in designing desired chiral metamaterials with
specific chiro-optical response.

plasmonic bars

X\

dielectric layer

/

(b)
Figure 7. (a) Helically decorated Au NPs and (b) helically stacked plasmonic bars with a thin dielectric layer.
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Appendix A Inverse of the Tridiagonal Matrix

We consider the inverse of the general tridiagonal matrix

ag cg 0 0 0 O 0 0 0

bz a C 0 0 0 0 0 0

0 b3 a3z c3 0 O 0 0 0

0 0 Z’J4 ag C4 0 0 0 0

AN — 0 0 0 b5 as Cs 0 0 0 (Al)

0 0 0 0 0 0 s+ AN-2 CN-2 0

0 0 0 0 0 0 s bN_1 aN—1 CN-1

0 0 000 0 ---0 by ay

The inverse of this matrix can be computed using co-factor matrices and has been
performed in [29] by Huang and McColl. The main result is the following (Theorem 2.1
and its proof was given in Appendix A in [29]). To write down the inverse explicitly, first
we need to define the second-order linear recurrences

z0 =1, z1 = ay; z; = 4;zj_1 — bic;_1zi_»,1=2,3,--- ,N (A2)

and
yn+1 =1L yn =an; yj = ajyj1 — bjaciyjr2, j=N-1,N-2,--- 1 (A3)

Then the inverse matrix A&l = {cpi,]-} (1 <1i,j < N) can be expressed as

1

$jj = oz /=123, N (A4)

b T2
aj b]c]*lzj,l bjt1¢j Vi1
where by = cjy = 0 and

- o V(T e g i<
o = {_Cizzilfpi-&—l,j <] _ {( 1) I(szl CHf) Z,i $ij t<J
L] — - /

_pYitly i~ i—j (177 Yi S s
bty >0 | (O b ) Bty 0>

(A5)

The inverse of the tridiagonal matrix can be computed N2 4 7N — 7 arithmetic operations.

Appendix A.1 Inverse of Matrix of the Helical NOBK Model

Let Ay be the matrix of the helical NOBK model. To simplify the notation, let a = 2,
then the matrix becomes

a b 0 0 0 O 0 0 0
bp a b 0 0 O 0 0 0
0 bp a b3 0 O 0 0 0
0 0 by a by O 0 0 0
Ay = 0 0 O by a by 0 0 0 (A6)
0 0 0 0 0 O a by—2 O
0 0 0 0 0 0 bN*Z a bel
00 00 0 O 0 by_1 a

The matrix is symmetric, tri-diagonal, with the diagonal {a,4a,4, - - - ,a} and the other
two diagonals {b1,by, b3, -+ ,bn_1}, where by = (—1)k’1g. We first define the second-
order linear recurrences

zi=azi_1— b} 1z, 1=2,3,--,N (A7)
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with zg = 1 and z; = g; and
yj:ayjﬂ—b}yj+2j:N—1,N—z,-~,1 (A8)

where yn11 = 1 and yny = 4. Then the inverse matrix Agjl = (¢i,j) (1 <i,j < N)canbe
expressed as

1
T T STV /ITY (A9)
j=1zj1 JYjs1
wherej=1,2,--- ,N, by = by = 0 and
Zj— .
9ij = @i = —bi i1 <. (A10)
1
We apply the formula inductively to obtain
— — i—i (T~ Zi—1 .
¢ij =i = (—1) 1( o bj,k) Z],—7145-,]-1 <. (A11)
Since bj = (—1)/"g, bJZ = ¢?,and H{;il bix = g]'fil—g;il (—1)i~k-1 = gjfi(_l)i(f"?(y’*)’
this yields
jG=0-i=1) .z .
i

Next, we compute z; and y;. They are satisfying the same linear recurrence equations
and initial (terminal) conditions but reversing the order. Hence, we have y; = zy 1 for
j=1,2,---,N. Wejust need to compute the z;s.

Z; = azj_1 — gzzi_z, withzg =1, z1 = a. (A13)
We have essentially computed z; in the beginning.

sin((i +1)cos (%)) Ald
sin(cos_lzig) ‘ .

zi =8

Then we note that y; has the exact same recursive formula as z; but reversing the order
by starting from N + 1 and N. Hence, we have y; =z, jfor1 <j< N +1,ie,

N+1_jsin((N+2—j)cos_l(%))' (AL5)

L= Z = -
Yi=N+1-j =8 sm(cos*lz”—g)

To simplify the notation, let ¢ = cos_l(ﬁ), since z; = w and
N+1-jg _i . .
yj = b SH;EI(II;] +21)9)  vecall that P = W, the denominator is calculated as

71z i Vi

a—b%lz_j—b]z;i:a—gzlz_j+:i]. (A16)

e 52y A[sin(i—Do] | sin[(N=j)o]
= P e (A7)
Note that g = 2cos0, Sins[iggi])a] = Sin(ja)coz;f[;is(ja)smg = coso — cot(jo)sino,
and Si;i[rz[zgiﬂ)l‘;]g] = sn[(N+1j lﬁfg’;ﬂ?;ﬁ“fﬁ)ﬁm = coso — cot[(N + 1 — j)o]sino, we

can simplify the denominator to be,
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This implies that
(i1 (N—i _ ' '
g [ZCOSU — Smii(riw)”] — Siiﬁ%ﬂgf)}d} = gsino[cot(jo) + cot((N +1—j)o)) A8
__ gsinosin[(N+1)0] ( )
" sin(jo)sin[(N+1—j)o]*
sin(jo)sin[(N + 1 —j)o
;= Sin{jo)sir [( iel (A19)
gsinosin[(N + 1)0]
and fori < j
_ =071 S g _ 1G=D~i(=1) sin(ig) sin(jo)sin[(N+1—j)o]
(Pirf - (_1> 2 g lz]-,i q>fzf - (_1) 2 sin(jo) ~ ~ gsinosin[(N+1)0] (A20)
(-1) % sin(io)sin[(N+1—/)o]
gsinosin[(N+1)o] 7
and ij,i = ¢i,j-
Appendix A.2 Inverse of Matrix of the Corner NOBK Model
The matrix Ay for the corner NOBK model can be written as
a b 00 00 000
b a b 000 0 00
0 babdb 00 0 00
00 b alb o0 0 00
AN = 000D ab --- 000 , (A21)
00 0O0O0TD0 a b 0
000O0O0OO --- b a
000O0OO0OO: - 0%b

here, s = Q%> and b = g. Based on Equations (A1)—(A5), the inverse of Ay is given by
setting b; = c¢; = b. Let Ay = (¢i), ¢ij is given by

—1)Hibi=9, i q/0N ifi<i
$ij = {( ) i-19j+1/0N ] and ¢;; = ;i (A22)

Oi—1¢j+1/0N ifi=j;
where the 6; is detA; with 6y = 1 and 6; = a and satisfies the recurrence relation
0; =ab;_ —b*0;_5, i=2,3,---,N. (A23)
and the ¢; satisfies the recurrence relation
¢j = adjp1 — b’ Pjo, j=N—-1,N—-2,--- 1 (A24)
with initial conditions ¢4 = 1 and ¢ = a. We have essentially computed 6; in the beginning.

0; = det(A;) = b’ sin((i + 1)cos™" (55))

sin(cos~157) (A25)

Then we note that ¢; has the exact same recursive formula as 6; but reversing the order
by starting from N + 1 and N. Hence, we have P = 9N+1—j for1<j<N+1,ie,

pN+I—] sin((N +2—j)cos™ (£))
sin(cos~147) '

¢ =0ny1-j = (A26)
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To simplify the notation, we let o = cos ™! (4) and

bisin((i +1)0) _ BNTsin((N +2 — f)o)

0, = sino and (P] sino . (A27)
Hence fori < j,
0 = (1) smb(zfr)sn}((N +1—j)o) (A28)
sinosin((N + 1)0)
and when i = j,
g sino)sin((N +1- j)o) A9
I 9y bsinosin((N +1)o)
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