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Abstract

We propose a theoretical approach to some of the nanorod-based metamaterial implementations that
does not depend on macroscopic electrodynamics. The approach is motivated by the fact that in actual
experiments the incident electromagnetic wave encounters a metamaterial structure which is planar
in its shape, contains a layer or two of artificially created building blocks, and therefore cannot be
regarded as a three-dimensional continuous medium. This leads to a theoretical framework in which
the phenomenological concept of refractive index loses its principled meaning, and the deeper concept
of scattering is taking center stage. Our proposal and its mathematical realization rely heavily on
Feynman’s explanation of the physical origin of the index of refraction and on his formula for the field
of a plane of oscillating charges. We provide a complete proof of Feynman’s formula, filling in some
steps that were missing in the original derivation, and then generalize it to the case of a finite disk,
which may be relevant to the actual experiments involving laser beams. We then show how the
formula can be applied to metamaterial nanoplasmonics by considering some subtle interference
effects in uniform laser beams striking metamaterial plates. The first two effects use a single layer of
aligned plasmonic nanorods, while the third uses a single layer of gyrotropic elements that may
conveniently be described by the celebrated Born-Kuhn oscillator model. The considered effects can
potentially be used in the development of quality standards for various metamaterial devices.

1. Introduction

Maxwell’s classical electrodynamics [1], the pinnacle of 19th century theoretical physics, supplemented by
Lorentz’ electron theory of matter [2, 3] require for their mutual conceptual consistency the existence of three
clearly distinguishable length scales [4, 5]. Each scale comes equipped with its own characteristic distance (as well
as the associated volume element) that has very specific physical meaning. The first, microscopic scale operates at
the level of the fundamental structural elements of a given medium (atoms, molecules, etc.), where, depending
on the context, the characteristic distance, d;, represents either the typical size of the fundamental element or the
separation distance between two nearest such elements. The second, intermediate scale defines the size of the so-
called ‘physical infinitesimally small volume’ [4, 6] over which the macroscopic averaging of various field
quantities has to be performed. Its characteristic distance, d,, corresponds to the size of an ideal probe that could
be used to measure the field in a given experimental situation [3, 7]. The third, macroscopic scale, ds, characterizes
the macroscopic volume in which the continuous (that is, macroscopically averaged) fields are actually defined.
The standard example is provided by a plane electromagnetic wave of wavelength A propagating in a transparent
medium, in which case d, is the separation distance between the molecules, d; is on the order of the wavelength,
and d, is some distance that satisfies the strong inequality, d;, < d, < ds.

Of the three scales mentioned above, the intermediate scale occupies a very peculiar position. Its
characteristic distance has to be sufficiently small for the measurement process to provide the detailed
description of the system at hand (say, provide the field values in the region which is several wavelengths long),

©2023 IOP Publishing Ltd


https://doi.org/10.1088/1402-4896/ad0f64
https://orcid.org/0000-0001-5752-9296
https://orcid.org/0000-0001-5752-9296
mailto:ag1@uga.edu
https://doi.org/10.1088/1402-4896/ad0f64
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad0f64&domain=pdf&date_stamp=2023-12-04
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad0f64&domain=pdf&date_stamp=2023-12-04

10P Publishing

Phys. Scr. 98 (2023) 125529 A Galiautdinov

and yet it has to be sufficiently large for the associated characteristic volume to contain a great number of
microscopic structural elements for the averaging procedure to be meaningful. Oftentimes, the d, is not even
explicitly mentioned or discussed, or its justification is sketchy and hand-waving, which makes the presence of
the intermediate scale either ambiguous or not immediately clear. In spite of all these imperfections in its
definition, whenever one deals with a medium that is regarded as continuous, the intermediate scale must always
unreservedly be present. Its very existence, no matter how hypothetical, is absolutely indispensable for any
‘legitimate’ use of continuous electrodynamics. This rather stringent requirement stems from the
epistemological position that, since Maxwell’s equations describe experimentally measurable quantities, there
should exist a practically realizable method of their determination.

On the other hand, we know from everyday experience that too strict adherence to operational definitions is
not at all necessary for the productive development of a theory. Two very instructive examples immediately
come to mind, although they are not directly related to the topic under consideration. The first of them is the
discovery by Dirac [8] of his famous wave equation for the electron in which there appeared some mysterious
matrices that had no immediate physical interpretation (due to the presence of ‘additional’ components and
indirect relation to the velocity operator). Another example is the experimental interpretation of the eigenvalues
of the position operator for an electron in a hydrogen atom. To determine electron’s position one has to strike
the atom with highly energetic photons which would destroy the atom, a procedure similar to the one reported
in [9] in which the authors used photoionization and an electrostatic lens to directly observe the electron orbitals.
So even though the system in question would be destroyed by the actual measurement, one still uses the quantum
mechanical language of wave functions and position operators to describe it.

When we turn our attention to metamaterial electrodynamics, we encounter a similar dichotomy. Often,
metamaterial structures consist of just a few layers of artificially created building blocks and therefore cannot be
regarded as three-dimensional continuous media for the purpose of macroscopic averaging. There is no concept
of intermediate scale here, since the entire width of the system is comparable to the size of the ‘microscopic’
structural element. Nevertheless, when applied to such artificial noncontinuous structures, macroscopic
electrodynamics (together with the standard procedures for retrieval of effective material parameters [10-14])
seems to be working remarkably well in predicting system’s electromagnetic properties [12, 15-21]; so much so
that one can’t help wondering if something deep is at play here underlying the theory’s success. These
considerations naturally lead to the question of why macroscopic electrodynamics relates so well to metamaterial
systems in general, and nanoplasmonic ones in particular. It seems intuitively obvious that at the fundamental
level the concept of scattering should play a major role in answering this important question. One needs to
decide, however, which specific approach to scattering to take and how much rigor to exercise. Much of past
work involved accurate and detailed studies of scattering on individual structural elements, taking into account
some nontrivial near-field effects, followed by careful statistical averaging to describe the corresponding effective
medium that would mimic system’s electromagnetic response (see, . g., [22—27]). Here we propose an approach
—somewhat less detailed, but also rooted in scattering and capable of providing some deep physical insight— to
systems in which individual plasmonic nanorods (or their simple combinations) play the role of fundamental
structural elements. We are primarily interested in either single sheets of aligned nanorods or metamaterial
plates made of corner-stacked nanorods, which we propose to model—and this is our main idea—as planes of
oscillating charges. This approach, whose details will be elucidated below, goes back to Feynman and is based on
his formula for the field of a plane of oscillating charges, to which we now turn.

2. Derivation of Feynman’s formula for the field of a plane of oscillating charges

2.1. Preliminary considerations

We assume the reader is familiar with Feynman’s semi-intuitive derivation of his formula for the field of a plane
of oscillating charges (see equations (9) and (24) below) as presented in [28]. The derivation misses some
important steps which we aim to fill in here first, before discussing some applications in nanoplasmonics.

The importance of Feynman’s formula stems from its use in explaining the physical origin of the refractive
index of a dielectric medium whose underlying structural elements (e. g., atoms) may conveniently be described
by the Drude-Lorentz oscillator model. To show how light ‘slows down’ in a dielectric material, Feynman ([28],
Ch. 31) treats the field of the transmitted electromagnetic wave as consisting of two parts: the original (incoming)
wave and the radiation field of all harmonically driven charges comprising the material. He then subdivides the
charges into a great number of planar sheets and asks for the contribution by one such sheet, at which point the
formula for the field of an oscillating plane naturally enters the discussion. In Feynman’s analysis the dielectric
material is not regarded as a medium per se, but as a large collection of charged particles sprinkled around and
scattering light in a vacuum, with all the fields propagating with the same limiting speed, c. The apparent
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R =(0,0,2)

Figure 1. Geometry of the problem.

reduction in that speed then turns out to be nothing but an interference effect, a mathematical fluke,
mathematical curiosity.

Since each oscillating charge can be regarded as an oscillating dipole, p, we begin our derivation of Feynman’s
formula with the exact expression for the field of a radiating point dipole valid at any distance, r, regardless of the
wavelength, A (Coulomb’s constant dropped for notational simplicity and will be restored later; overdots
indicate differentiation with respect to time),

3(p(1) - MA — p(7) + 3(p(7) - M — p(7) n (p(r) - A — p(1)
3 )

.
T=t—— (1)
r cr? cr c

E(dipole) (P, t) —

Accordingto (1), in the far zone, the electric field vector E(P, t) evaluated at the observation point P = (x, y, z)
at time tis orthogonal to vector r connecting the dipole to P and lies in the plane spanned by rand p (1),
evaluated at the retarded time 7 (with similar interpretations for the near and induction terms). In our problem
all dipoles are assumed to be coherently oscillating in the xy-plane in the direction parallel to the x-axis, as shown
in figure 1. Correspondingly, for points P = (0, 0, z) located on the z-axis, all relevant vectors have components
asindicated in that figure, with p(7) = (p(7),0,0), p(7) = (p.(7), 0, 0), and

PO N .1 e A @)
r \/ X2+ Y2+ 22

Substitution into (1) gives,
(2x12 _ y12 _ Z2, 3xly/’ _3xlz)
(x/2 +y/2 + Z2)5/2
N px(,,_) (2x'? — y/2 — 2z 3x/y/, —3x'z)
c (xlz +y/2 + Z2)2
p.(T) (—y"? — 22, x!y!, —x'z)
2 &2 + y? + 222

EC@9(z, 1) = p, (7)

+

3

which shows that the y and z components of the electric field change sign under the x’ < —x’ transformation.
This means that they vanish for any distribution of charges symmetric with respect to the y-axis, which can be
understood intuitively by sketching the net field due to a pair of identical dipoles positioned symmetrically
relative to the y-axis, with one directly above the other (figure 2).

Therefore, only the x component of the field,

252 — y/z _ 72 pX(T) 2x/2 — y/2 — 22 B p‘x(T) y/2 4+ 22

(dipole) _
E; (z, 1) = p.(7) &2+ 2+ 2252 ¢ @2+ 7+ 22 2 Py 22372

(C))

needs to be kept in our derivation.
The calculation of the total field then proceeds by dividing the planar distribution into a series of
infinitesimally thin concentric rings of variable radii s and thickness ds, and then integrating (figure 3).
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induction fields.

Figure 2. The far field of two symmetrically positioned dipoles has no y and zcomponents. Similar argument applies to the near and

Figure 3. One of the infinitesimal rings used in the integration procedure.

For one such ring we have, on the basis of (4) and using x’ = s cos ¢, y' = s sin ¢,

. 2 942 2 — s25in2? _
E{™(z, 1) =1 p, (T)j(; — (fl +5225)5/2<p :
L p.(7) f” 252 cos?p — stsinfp — z

c 0 (s2 + z%)?

N p(T) 2 $2sin?p + z2

2 j; (s2 + z2)3/2

2
sdy ds

2
sdy ds

s dy ds,

where 7 is the surface density (the number of dipoles per unit area). Taking into account that
foh cos?p dp = ‘];ZF sin? p dp = 7,17 = 5> + 2, sds = rdr, we get

©)
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which, for harmonically oscillating charges with
px(T) — qxoefiw(tfr/c)’ 7))

results in the total field,

a . 1 322 iw 1 322 w? z?
EX(Z) t) = TTNgx, et I(Z, ﬂ), I(Z, ﬂ) E,_/; el(w/c)rl:z(l — 2) - — (1 — 2) + 2(1 + rz):ldr.

;
®)

In the above we used quantum mechanical sign convention for frequency w and kept the upper limit of
integration, g, finite with the intention of distinguishing between two interesting cases: an infinite plane (in
which case a — oo ) and a disk (in which case a remains finite). Before proceeding further, let us take a brieflook
at Feynman’s own derivation.

2.2. Brief review of Feynman’s ‘proof’
Feynman derived his result (see section 30-7 in [28]),

E.(P) = 2 4 fwxge wWt=2/0), )
c
by working in the far zone and using the approximate dipole radiation formula,
Edipol)(py 4 wlxy e Wt=2/0), (10)
c’r
which represents the field in dipole’s equatorial plane only, thus ignoring the near zone, the induction zone, and

the angular dependence due to mutual orientation of p(7) and # in the far zone (cf. our equation (4)). This leads
to the expression for the total field,

. wz a .
Ec(P) = 2mgxg e 2 [ eferor ar, (1)
Cc z
which differs substantially from our equation (8). In the limit a — oo the integral in (11) evaluates to
oo Cc . .
f el(u}/C)T dr = _i_[e1(w/c)oc _ el(u/c)z]’ (12)
z w

which is not well defined. To make sense of the infinite exponent, Feynman regularizes (11) by replacing the
constant surface density 7 with radially tapered density 7)(r) and then evaluating the integral,

f n(r) /O dr ~ Z n(ry) el W/ Ar;
z .
j
=n(z) e'“/7 Ar 4+ n(z + Ar) e/ @W/OCHAD Ay 4 n(z + 2Ar) e/ @W/OET2AD App

—n(2) ei(w/c)z{Ar AP NEE B sonr A, NE+ 287 ezi<w/c>Ar+_”}, (13)

1(2) 1(2)

graphically by adding up small arrows of slowly decreasing length that represent the complex-valued terms
in the curly brackets of the Riemann sum above. By depicting this process in figure 4 we immediately see that the
integral is equal to i(c/w)n(z) e“”/ 9%, which corresponds to setting the infinite exponent in equation (12) to
zero, thus recovering equation (9).

2.3. Derivation continued
We now return to our expression (8) and regularize it ala Feynman by replacing the constant density  with the
tapered one which we choose to be in the form,

n(r) = ne= W o >0, (14)

where «vis a small positive parameter to be set to zero at the end of the calculation. This gives,

2 ; 2,2 ") 2
I(z, a) = fﬂ e(ia)(u/c)r{w_ _w l + (1 + wz )i + 3wz i — z}dr, (15)
z

c? cr ct )r? c 7l r#

which allows us to interpret Feynman’s regularization procedure as Wick rotation in the complex r-plane (see
also figure 6 and equation (22) below). Next,
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Figure 4. Feynman’s approach to evaluating f ™ n(r) e/ dr with the help of a radially tapered surface density 17(r) as given in

equation (13).

1 52 ¢ 2,2 . 52 ¢
I(z, a)z,Lc(efz—efl)—E e—d§+(l+ wczz )(1—04)%‘[E Z—zdc

(i— ) cJe 1
3iwz? [ . wl ré e o[ . wP re e
—+ c I:(lOé)?jl j;l Ed{*fiz I:(lot)?:l j;l ch,
where
LE=>0-0)Ww/oa, §=(0—- a)(w/oz
Taking into account that
& e & e e =
S ac = Ca -2,
Joaesl T <l
& e 1 & ef eS eS &
—d¢ == —d—|—+ = )
J; c% 2f1§< [4 CZL
& el 1 & e eS et 2eC E
Jo w=syh ?‘K—[?+?+?L |
and

& el : .
Jo T = E© — E©),

1

after some algebra we find,

2 N w2 N 2,2

I(z, a) = eli-0@/0a L 1 - = " (o + 2)wz® ala+ Hw?z
(i—a)c a a? 2ac 2c?

w eli—MW/o)z

2 (i— a)

- %(1 — (a4 1)“’222)(131[(1' _ a)ﬁa] - Ei[(i - a)ﬁz]),
c 2¢? c c

((4 + ale + i) — a(a? + 1)ﬂ)
c

(16)

17)

(18)

(19)

(20)
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0 branch cut

Figure 5. Sketch of two alternative paths in the complex (-plane defining the exponential integral function Ei(§).

{-plane

A\ 4

Figure 6. The limit of Ei(§) asa — oo alongtheray £ = (i — ) %a is zero, equation (22).

where Ei(€) is the well-known exponential integral [29],

& o€
B = [ Td6 -0l < @D

The restriction on the argument is due to the standard choice of the branch cut that makes the integral single-
valued (figure 5).

We can view Ei(€) as accumulation function for f({) = e*/Calonga path (call it I') running from — oo to £in
the complex (-plane. The choice of this defining path is not unique. One may deform the path arbitrarily as long
as it originates at the ‘left’ infinity and does not cross the branch cut. A simple example is provided by the semi-
infinite straight segment I' that runs parallel to the real axis and is described by —oo < Re({) < Re(§),

Im(¢) = Im(€). Based on this observation we can see that the limit of Ei(§) as £ — oo along the ray shown in
figure 6 is equal to zero,
lim Ei[(i - a)ﬁa] = (22)

a— 00 C

With this result at hand, we are ready to complete our derivation (see equations (8) and (20)).

2.4. Infinite plane
In the case of infinite plane we take the double-limit in (20) using (22) by first letting a — oo and then o — 0.
This immediately gives,

I = 2i % eiw/0z (23)

whose use in (8) recovers Feynman’s formula,

E.(z, t) =27 M iwxge@=2/9)  (infinite plane). (24)
c
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Figure 7. Radiating disk of radius b.

2.5. Finite disk
In the case of a finite disk (of radius b) we set & = 0 in (20), keeping a and z finite, as shown in figure 7. This gives,

. . 1 2 ic b2 .
E.(z, t) = Zﬂn—qzwxo e W2/ A(Z), A@@)=1— 5(1 + 2—2 — 1—2)6’(”/‘)(‘12), a=+z2 + b?,
c a wa a

(25)

which is valid everywhere on the symmetry axis. Notice that this expression vanishes in the limit z — oo (via
A — 0). Also, in the limit b — oo we get equation (24) for the infinite plane, provided we formally set e in A
to zero.
For the far field, with \/z < 1, b/z < 1 (with no additional restriction on b), using approximation a = z
(1 + b*/(22)) we get,

Ee(z, 1) = 21 WL jwmge @020 A(z),  A(z) = 1 — eim/0%), (26)
c
and the corresponding (unnormalized) intensity,

AR = 2[1 — cos(ﬂ—bz)], (27)
Az

where 7b” is the area of the disk. If, in addition, we impose a stronger condition b*/(\z) < 1, we recover the
intuitively anticipated result,

2 2\2
B ) = 21 W iuge 029 AD),  A2) = —im,  JA@P = [Z2], 28)
c Az Az
or,
E ( — Q 2 —iw(t—2z/c) _ 2
xzat)_waOE > Q—anq, (29)
c*z

for a ‘point-like’ disk of total charge Q viewed from a very large distance. The predicted intensity of disk’s field,
| A(2) %, as the function of the distance, z, in a realistic experimental regime described by equation (26) is shown
in figures 8 and 9.
Itis interesting to notice that for distances z > zy = b*/ \ the radiation intensity ceases to oscillate. This
corresponds to the condition (see figure 7),
gzu%b—zzﬁ<l, (30)
A A 20z 2z
in which case the path length difference, A¢ = a — z, between the outermost and central dipoles is less than the
wavelength A for any such z. This results in a very slow change of the interference pattern with distance, which
makes the ‘last’ oscillation of combined intensity ‘stretch out’ all the way to spatial infinity (z — oo in figure 8).
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b =0.0005 m, b*/A = 0.39507 m
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4
3
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b =0.0015 m, b%/A = 3.55563 m
2
|A]
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3
2
1
0 z [m]
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Figure 8. Blue curves: predicted behavior of the radiation intensity, | A(z) |* (on the symmetry axis, at points P = (0, 0, 2)), as the
function of the distance, z, from a uniform disk of identical oscillating dipoles, as described by equation (26). Here, A = 632.8 nm is
the radiation wavelength and b is the radius of the disk. Orange curves: asymptotic behavior of | A(z) |? at large z, as given by
equations (28) and (29). Compare with figure 9.

Before concluding this section, let us make a mental note that the expression for the field given by Feynman’s
formula is proportional to the retarded velocity of the oscillating charges, or, equivalently, to the corresponding
retarded electric current. The appearance of the current is not too surprising and may be traced to a more
traditional approach to scattering on two-dimensional structures, as we briefly outline in appendix A. When we
come to discuss electrodynamics of chiral media, this result, properly generalized, will play a central role in
connecting our theory to the previously published work on metamaterial nanoplasmonics. Such connection is
possible because within the Born-Kuhn model of optical activity the very definition of optical rotatory dispersion

is given in terms of the bound currents induced in the material by the incident electromagnetic wave (see, e. g.,
discussion in [30]).
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Figure 9. Radiation intensity, |.A(z) |, in the xz-plane, as the function of the distance, z, from a uniform disk of identical oscillating
dipoles, found by numerical integration of equation (1). Here, A = 632.8 nm is the radiation wavelength and b = 1 mm is the radius
of the disk, so that zy = b*/\ = 1.58028 m. (In the yz-plane the plot is identical, and in any other plane is similar, to this one.)

3. Applications in metamaterial nanoplasmonics

3.1.Laser beam striking a sheet of aligned plasmonic nanorods

Assume now that the radiating disk of finite radius b is artificially induced by a uniform laser beam of wavelength
A= 632.8 nm (He—Ne laser, red) and cross-sectional radius b = 1 mm striking infinitesimally thin sheet of
dipoles, such as a layer of plasmonic nanorods, as depicted in figure 10. Assume also that the observation point P
is chosen, say, anywhere between 0.25 to 6.5 meters from the sheet. In that case,

wb/c = 2mb/ )\ =21 x 1580, 31

and
0.00015 < b/z < 0.004, 0.24 < b*/(\2) < 6.3, b*/\=1.58m, (32)

so we are in the experimental situation described by equation (26). For Implementation I, in which the field
measurements are made in the reflected beam, the predicted intensity, |.A(z) |% as the function of the distance, z,
is given in figure 8 (provided we work at nearly normal incidence).

Despite the high sensitivity of the intensity pattern to the values of the beam’s diameter, the proposed setup
seems to be within an easily realizable range of experimental parameters, which should make the observation of

10
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Implementation I:
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Figure 10. Schematics of the experiment in which radiating disk of oscillating dipoles is effectively generated by a laser beam that
either (I) is scattered (at nearly normal incidence) by, or (II) passes through, a two-dimensional sheet of aligned plasmonic nanorods.

Implementation II:

this interference effect relatively straightforward. [We note in passing that the reason for using metallic systems,
rather than, say, dielectric ones, is not a matter of principle (our theory is equally applicable to dielectric systems
as well), but the practical one. Because of very high density of quasi-valence electrons, the induced electric
moments in plasmonic nanorods are many orders of magnitude greater than in the dielectric ones, which leads
to amuch stronger optical response. Typical resonant wavelengths in such systems (usually, gold and silver) are
on the order of a few hundred to a couple thousand nanometers [21, 30-36], which can be adjusted by varying
nanorod dimensions, allowing experiments at optical to near-infrared frequencies. Here we visualize a simplified
scenario in which the nanorods are not too densely packed, potentially missing on some interesting
contributions coming from various near field interaction effects (see, e. g., [22, 23]; also appendix A). In addition,
since our derivation assumes point-like dipoles, the size, d,, of the nanorods is restricted by the condition

d; < A, which also sets the scale for their separation distance (see discussion around equations (56), (57)).
Correspondingly, in experiments described by our theory, d; ranges between a few to a few tens nanometers.
Packing closer than that would push us into the regime of continuous electrodynamics, rendering our approach

inapplicable.]

For Implementation I, in which the field measurements are made in the transmitted beam, the net field at P
is the sum of the incoming wave (&,, &,) e~ (=2/9 and the radiation field of the oscillating disk. The equation of

motion for a driven dipole in this case is

X4 %+ wix = (q/m)Ee ™,

(33)

where wy is the natural frequency of the equivalent Drude-Lorentz oscillator, 7is the damping coefficient, and

q/m is the charge-to-mass ratio. Denoting

we get the steady state solution,

x(t) = xpe v,

which, on the basis of (26), gives the total transmitted field,

P = wy — w? — iw, (34)
__1
X0 = mQZ gx) (35)
) wD Wél
Ez, 1)=& e ™2/, Tz)=1 + i——A), (36)
2c

Ei(z, 1) = T(z) & e~ wt=2/0),
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where A = 1forawidebeamand A(z) = 1 — ™"/ for a narrow beam of cross-sectional radius b. In the
above, we formally introduced the plasma frequency (with Coulomb’s constant restored) for a single sheet of
nanorods, hence subscript 1 (cf. (49)),
2

Wl = M R (37)
€o mD
where D is the thickness of the metamaterial plate (practically, nanorod’s cross-sectional diameter) and ¢, is the
electric constant. Notice that a single layer of aligned nanorods is functionally equivalent to a birefringent plate.
Also notice that the transmission amplitude can be written in a slightly different form,

!/
T2 =1 + i 22 ), (38)
02
in terms of a different characteristic frequency (primed plasma frequency),
2
wp! = =, (39)
2eqmc

which may be useful in some contexts, though in what follows we will adhere to traditional definition.

The ‘usual’ theory based on macroscopic electrodynamics is recovered by setting A = 1 (wide beam) and
introducing the quantity which we may call the index of refraction (for lack of a better word),

2
w
— pl
m = 1+ ﬁ , (40)

which for w far from resonant wy corresponds approximately to the permittivity of the Drude-Lorentz model,
nt~epp =1+ wf,l / 2. In the absence of losses (y = 0) and for w < wy, the index of refraction is real and
positive, so for an x-polarized wave we get,

Ex(z, t) = (1 + M) E e @=2/9 5 £ exp {—iw[t -z (L — 2)]}, (41)

c c c/m c

which shows an increase in the optical path-length due to an effective reduction in phase velocity (from the
original cdown to ¢/n;) when propagating through the plate, in agreement with Feynman’s reasoning ([28], Ch.
31). In the case of a narrow laser beam, using A(z) = 1 — ¢™*/(\9 and assuming v = 0 in equation (36), we get
for transmitted radiation intensity,

2
TP = 1+ 20m — 1)£sin(”—b2) + 2((;11 - 1)£) [1 - cos(”—bz)], (42)
c Az c

VA

which is depicted in figure 11. [If the rods are deposited on a very thin transparent dielectric substrate then an
extra term involving the effective #1g;ejecyric Of the material should be included in equations (36) and (41) to
account for additional increase in the corresponding optical path-length. If a thick substrate is employed then
transmitted intensity should be modified using Fresnel’s coefficients familiar from continuous
electrodynamics.]

3.2. Laser beam striking a chiral plate
The two-dimensional Born-Kuhn (BK) oscillator model [37, 38] (also [39, 40]) represents a chiral block (the
fundamental structural element of a chiral medium) by two coupled charged harmonic oscillators, oneatz =0
and the other at z = d, displaced as depicted in figure 12 and subjected to a plane electromagnetic wave of
frequency wand wave number k = w/c propagating with the limiting speed c along the z-axis. The charges are
restricted to move in the x and y directions, respectively, in which case their equations of motion are given by
X4 %+ wix + wly = (q/m)Ee ™,
o+ + wiy + wix = (g/m)Eye kD, (43)

where w, is the coupling frequency and (&, &,) are the amplitudes of the x and y components of the electric field
in the incoming wave. Using the steady state Ansatz,

x(t) — xoe—iwt’ )/(t) — yoe—i(wt—kd), (44)

the equations of motion can be written in matrix form,

@) (e -
wcefzkd 02 W m Sy
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Figure 11. Predicted transmitted intensity, T (z) = |7(z) |* (unnormalized), as the function of the distance, z, equation (42), for an x-
polarized laser beam passing through a sheet of aligned plasmonic nanorods (Implementation IT). Beam parameters: A = 632.8 nm,
b = 1 mm, with arbitrarily chosen (1; — 1)wD/c = 0.1 (red curve, corresponding to wy > w) and (n; — 1)wD/c = — 0.1 (blue curve,
corresponding to wy < w).

2b

d<KAKLz

incoming
beam

a “chiral block”
(not to scale)

Figure 12. Schematic representation of the fundamental structural element (the ‘chiral block’) of a gyrotropic metamaterial in
accordance with the two-dimensional Born-Kuhn oscillator model. One possible implementation of the model consists of a single
layer of such blocks which, in turn, can be visualized as being made of two planes of pair-wise coupled harmonically oscillating

charges.
with the solution,
X0 = _a® & — w—zefkdg Yo = _a% & — w—ze_ikdg . (46)
m@ —H\ "o ) m@t - H T o 7
The net field at the observation point is the sum of the incoming field and the field of all radiating charges,
viewed as two planes of pairwise coupled BK oscillators, which gives, using our generalization of Feynman’s
formula (26),
. 202 2
_ iwd pr We ikd —iw(t—z/c)
EX(Z, t) = gx + —Cm(gx — ﬁe gy A(Z) e t S (47)
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Figure 13. Top view of a metamaterial supercell consisting of four Born-Kuhn chiral blocks arranged in a C4-symmetric
configuration.

wiQ? z A
E\(z 1) = {5y pied ( y — %e"kd&c)A(z - d)}e"”(”/ B (48)

2c -t

where A = 1forawideand A(z) = 1 — ¢™"/(9 for a narrow beam, respectively, with the plasma frequency
now defined by (cf. (37)),

nq*

&0 md

wy (49)

In actual experiments, a BK chiral block is made of two identical corner-stacked ‘vertically’ displaced
plasmonic nanorods that are coupled either capacitively or conductively through their mutual near-field
interaction [31] (for an earlier theoretical proposal involving inductive coupling see [41]). In addition, in order
to avoid anisotropy effects that lead to polarization conversion, the nanorods are arranged in C4-symmetric
configurations (with four nanorod pairs at a time), forming square-shaped ‘supercells’ out of which
metamaterial plates are constructed (figure 13; for details see [31]).

The corresponding equations of motion for pairs 1 and 2 are then (notice the physically motivated minus
signs in front of some of the coupling terms),

%+ i+ wix + wiy = (q/m)Ee ™, (50)
i+ W+ won + win = (g/m)E,e7 @k, (51)
B+ e+ wox — wiy, = (q/m)EeT IR, (52)
B+ Vs + wop, — win = (q/m)Ee i, (53)
with the solution,

q$ ( we ikd ) q$ we —ikd

Xo1 = E, — —=e 5J, s Y= ——— gy — ZCeikg |, (54)
m(Q* — wh) o om(@t - W o

— q ¢ Wi i _ q Wi

X2 = m(Q4 — 4) ((‘:x + Q—ge Ey > Yoo = m gy + Q—;e E (55)

and similarly for pairs 3 and 4. Taking into account that d < z, so that A(z — d) = A(z), we get the total
transmitted field,

422 4wl w?
E(z, t) = {(1 + i azj—d —r A(z))é’x + C;—d —

c -t c -t

sin(kd) A(z) Ey} e iwt=2/0), (56)
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. wd 4‘«0123&22 wd A lzp : p
_ hatdd 71w —z/c)
E (2, t) = {(1 +i— o A( ) |E T sin(kd) A(z) &, . (57)

C

Because the BK model ignores any coupling between different chiral blocks, to make it physically reasonable
we have to assume that the separation distance d between nanorods in a given BK pair is much smaller than the
distance d, between nearest such pairs (figure 13). Therefore, in the context of Feynman’s approach, the distance
d, should be viewed as the effective size of individual dipoles that appear in the derivation of his formula. Since
that derivation was performed under the assumption of point dipoles, we have to assume that d; < A and, thus,
d < A orkd < 1. Correspondingly, from the point of view of a single chiral block, we are in the long-wavelength
(or, quasi-static) limit, in which case we may set

sin(kd) ~ kd, (58)
and get,
Ei(z, 1) = {(1 +i— X A( )) + w—rd A(z) 5} PO (59)
2
E},(Z, £ = { Fd A@) &, + (1 4 wxd X A(Z)) } e iwlt=2/0) (60)
where we formally introduced susceptibility and the nonlocality (or, gyration) parameter,
A - 4wlwid 6D
AT Wt oot -

to make connection with their counterparts in the Born-Kuhn model [31, 39] (the factors of 4 are due to the
number of chiral blocks in the supercell). Additionally, if the two BK planes of coupled nanorods are separated
by a transparent dielectric layer (of thickness d < ) then, following Feynman’s ideology, we may treat such a
layer as another plane of oscillating charges with effective susceptibility X gietectric and get (our main result),

E.(z, t) = {(1 i w2_xd .A(z))E + “’Z—Fd A(z) 5} —iw(t=2/0), (62)
C
2
E,(z 1) :{ 2Fd A2) &, + (1 L wxd X A(z)) } e—iw(t=2/0), (63)
where
X = 5& + Xdielectric* (64)

Diagonalization of the system (62), (63) immediately gives the two eigenmodes (the left (LCP) and the right
(RCP) circularly polarized electromagnetic waves) and their respective eigenvalues, 77 g,

(gy)L,R B \/z (il)’ ﬂR(Z) =1 + 1 2c j: c A(Z), (65)

where & is the amplitude of the incoming wave. When these modes pass through a BK plate, their polarization
stays the same, while the amplitude is multiplied by the corresponding eigenvalue (c¢f. Equation (36)), which
therefore determines the transmitted intensity (as a function of the distance), | 71 z(z) |*.

Introducing two ‘brightness’ amplitudes,

BLr(z) =i j—f( + wC—P)A(z), (66)

which characterize contributions to the respective transmitted modes due to the radiating (portion of the) BK
plate, we can define two additional experimentally relevant quantities: differential brightness (which generalizes
to narrow beams the concept of optical rotatory dispersion (ORD), ¢f. Equation (520.2) in [30]),

wd? w

ORD ~ AB(2) = [Bu(2)]* — |Br(2)]* = —— (XT’ + X" A@) P, (67)
c?
and differential absorbance (which generalizes the concept of circular dichroism (CD), ¢f. Equation (7) in [31]),
CD ~ ) = — 24 2200 4y 4 T A2, (68)
c <

where we used primes to indicate the real and imaginary parts of various quantities involved, x = x’ + ix”,
=I"+il", A= A + iA".Itis then straightforward to show using simple algebra that (unnormalized)
transmitted differential intensity is given by
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Figure 14. Transmitted differential intensity, AT(z), on the symmetry axis as predicted by equations (65), (69), for a laser beam of
cross-sectional radius b, with A(z) = 1 — i 02), passing through a C4-symmetric BK plate. Here, b/d = 100000, kd=0.1, w,/
wo = 2,7v/wo = 0.05, w./wy = 0.4, and X gielectric = 0.5.

AT (2) = T2 — |Tr(2) P = AB(2) + AA(2), (69)

which is plotted for a laser beam of finite width in figure 14. For a wide beam (A4 = 1) this becomes z-
independent,

4 cuf, w? (wzdz/cz){él(w% — wz)(wf, (wd/c) — W) + Xdielectric (wd/c)((w% —w)? — YW — W)}

AT 2 272 432 2 200 2 2y2 4 4 1
(W = wp)® — wo)™ + 27w (W — wp)® + wo) +7'w

(70)

as shown in figure 15. Notice that for sufficiently small values of kd, when damping becomes dominant, the
numerator in (70) may become negative and we get abnormal behavior of AT (though the effect is expected to be
quite weak), as shown in figures 16 and 17.

Finally, for an incoming beam linearly polarized along the x-axis, with &£, = &, £, = 0, the corresponding
transmitted field is elliptically polarized and is given by

2
EA;O:(L+ﬂ%ﬂA@0£MiWZ“% @@J):—%éﬁA@ﬂ%f“W”Q 71)
c c

If we work with a wide beam (b = 0o, A = 1), assume no losses (7 = 0), and take w to be far from each of the
two resonances, wy = /wg & w, then the y-dependent term can be dropped (with elliptical polarization
degenerating into linear), and we get the standard expression for polarization rotation angle,

w2

-5 T, (72)

where the minus sign is due to our left-handed choice for the chirality of the BK plate. Supplemental Movies 1, 2,
and 3 show how, in accordance with our theory, linearly polarized electromagnetic waves of different frequencies

change their polarization upon passing through a chiral plate located at the origin. (The incident and transmitted
amplitudes in Movies 2 and 3 have been re-scaled differently to enhance visualization.)

4. Summary

We developed a simple physically motivated theoretical method for the analysis of electromagnetic processes in
nanorod-based plasmonic metamaterials that is not rooted in macroscopic electrodynamics. Specific
predictions were made for a single sheet of aligned nanorods and for a chiral plate made of corner-stacked
nanorods, which can easily be extended to more complicated multi-stacked structures consisting of dipole-like
basic elements. We proposed several interference experiments to test our theory that can be performed using
readily available equipment. Due to high sensitivity of the predicted interference patterns to small changes in
various system’s parameters (such as, e. g., surface density of the deposited nanorods or resonant frequencies of
individual nanorods) the proposed experimental implementations could potentially be used in the development
of quality standards for various metamaterial devices. In principle, our approach should also be able to handle
systems that exhibit nonlinear and higher-order multipole behavior, though the mathematical details
accompanying such generalization may likely become rather complicated.
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Figure 15. Transmitted differential intensity, AT, as predicted by equation (70), for a wide beam (b = 0o , A = 1) passing through a
C,4-symmetric BK plate. Here, kd = 0.1,0.05, 0.025, w,,/wy = 2,7/wy = 0.05, w./wy = 0.1 (red), 0.2 (orange), 0.3 (green), 0.4 (blue),
and Xdielectric = 0.5.

Figure 16. Abnormal behavior of transmitted differential intensity, AT(z), as predicted by equations (65), (69), for alaser beam of
cross-sectional radius b, with A(z) = 1 — ¢/™*/(\2), passing through a C,-symmetric BK plate. Here, b/d = 100000, kd=0.01,
Wp/wo =2 ’Y/"JO =0.05, wc/wo = 0.4, and Xdielectric = 0.5.
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AT
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Figure 17. Abnormal behavior of transmitted differential intensity, AT, as predicted by equation (70), for a wide beam (b = oo,
A = 1) passing through a C;-symmetric BK plate. Here, kd=0.01, w,,/wy = 2,7/wy = 0.05, w/wy = 0.1 (red), 0.2 (orange), 0.3
(green)) 0.4 (blue)a and Xdielectric = 0.5.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix A. Elementary theory of scattering on a plane of charges

Here for the sake of completeness we re-derive equations (36) and (47), (48) in the case of a wide beam (b = 0,
A = 1) usinga more traditional approach to scattering. Our discussion parallels that of [42].

For harmonically oscillating fields, E, B, charges, p, and currents, j, Maxwell’s equations take the form
(Coulomb’s constant dropped, the magnetic field B is re-scaled by the speed of light ¢),

V - E(r, w) = 47p(r, w), (A1)

V x E(r, w) = iﬁB(r, w), (A2)

V - B(r, w)cz 0, (A3)

V X Blrw) = ~ 2B ) + T, w) (Ad)

If we assume a scenario in which a plane electromagnetic wave propagating in the positive z-direction strikes at
normal incidence infinitesimally thin (essentially, 6-function like) slab of some material located at z = 0, then for
points outside of the xy-plane the solution is

&v &v &v
E(z<0,w) = g(y,-) e i(wi—kz) + 55:) e—i(wt+kz)’ E(z >0, w) = g(yt) e’i(“’t’kZ), (A5)
0 0 0
and similarly for the magnetic field, with

BO = 0, BY = g0, (A6)
BY =¢£0, BY=-£0, (A7)
BO = g0, B = g0, (A8)

and the boundary conditions at the interface,
EP+EP=¢Y, D+ =€, (A9)
BY — (BY 4+ BY) = 4{/@, BY — (BY + BY) = —47”16,6, (A10)

where £ and B4 are the incident, reflected, and transmitted amplitudes, respectively, and (K, K,)is the
bound surface current density. Combining all these relations gives the boundary conditions in terms of the
electric field only,

; 4T ; 4T
E) - &Y — &V ="K E) - €Y - £ =K, (A1)
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which for transmitted amplitudes become

™

i 2 ™
=8 -7

S (A12)

For a single sheet of aligned nanorods, we get on the basis of equation (35),
R(t) = —iwxge 1, xg = %Eﬁ?, y(® =0, (A13)
m

and
77;42 2 ggci))
mD €)?
which upon restoring Coulomb’s constant recovers equation (36) with .4 = 1 (wide beam). Notice that in our
derivation we assumed that the nanorods were not dqnsely packed and were driven by the local field, which,
following standard practice [39, 40], we took to be £{. This is in contrast with the tightly packed scenario which
would typically be handled using macroscopic electrodynamics by taking

Ky = 0.9, (A15)
where o, is the conductivity, with the result (see equation (1) in [43]),
ED = 785;) .
* 1 + 27o/c

Ky = ngx(t) = —iw K, =0, (Al4)

(A16)

The tightly packed scenario clearly allows the possibility of zero transmission for very large o, (think of
aluminum foil reflecting all incident light, for example). In our theory that situation would roughly correspond
to

X() = —iwxge @, xp = #89, J(t) = 0, (A17)
[compare with equation (A13) above], which after restoring Coulomb’s constant would give,
gy 1
To) =2 = ———, Al8
©= - — (A18)
2c O
and, in first order,
2
. wD Wy
TD)~1 + 1 ———, Al19
) o (A19)

in agreement with equation (36).
For a chiral plate viewed as two planes of orthogonally oscillating charges, the first set of boundary conditions
is

) .
0 =g0 - L, £0=g (A20)
c
while the second is shifted in phase,
. o ) o 2
EWeikd — g ikd g(yt)ezkd - gg/l)elkd _ TWK:)” (A21)

which on the basis of (44) and (46) give

2 2 2 2 2 2
__.oma_ d () _ Y ikd oli) __omat d () _ Ye —ikde) | ikd
’Cx = —ww %m(gx - Q—;e g},l , ’Cy = —ww Em Sy - Q—;e gx e, (AZZ)

recovering equations (47) and (48) in the case of a wide beam.
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