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Abstract
Wepropose a theoretical approach to some of the nanorod-basedmetamaterial implementations that
does not depend onmacroscopic electrodynamics. The approach ismotivated by the fact that in actual
experiments the incident electromagnetic wave encounters ametamaterial structure which is planar
in its shape, contains a layer or two of artificially created building blocks, and therefore cannot be
regarded as a three-dimensional continuousmedium. This leads to a theoretical framework inwhich
the phenomenological concept of refractive index loses its principledmeaning, and the deeper concept
of scattering is taking center stage.Our proposal and itsmathematical realization rely heavily on
Feynman’s explanation of the physical origin of the index of refraction and on his formula for the field
of a plane of oscillating charges.We provide a complete proof of Feynman’s formula, filling in some
steps that weremissing in the original derivation, and then generalize it to the case of afinite disk,
whichmay be relevant to the actual experiments involving laser beams.We then showhow the
formula can be applied tometamaterial nanoplasmonics by considering some subtle interference
effects in uniform laser beams strikingmetamaterial plates. Thefirst two effects use a single layer of
aligned plasmonic nanorods, while the third uses a single layer of gyrotropic elements thatmay
conveniently be described by the celebrated Born-Kuhn oscillatormodel. The considered effects can
potentially be used in the development of quality standards for variousmetamaterial devices.

1. Introduction

Maxwell’s classical electrodynamics [1], the pinnacle of 19th century theoretical physics, supplemented by
Lorentz’ electron theory ofmatter [2, 3] require for theirmutual conceptual consistency the existence of three
clearly distinguishable length scales [4, 5]. Each scale comes equippedwith its own characteristic distance (aswell
as the associated volume element) that has very specific physicalmeaning. Thefirst,microscopic scale operates at
the level of the fundamental structural elements of a givenmedium (atoms,molecules, etc.), where, depending
on the context, the characteristic distance, d1, represents either the typical size of the fundamental element or the
separation distance between two nearest such elements. The second, intermediate scale defines the size of the so-
called ‘physical infinitesimally small volume’ [4, 6] over which themacroscopic averaging of various field
quantities has to be performed. Its characteristic distance, d2, corresponds to the size of an ideal probe that could
be used tomeasure thefield in a given experimental situation [3, 7]. The third,macroscopic scale, d3, characterizes
themacroscopic volume inwhich the continuous (that is,macroscopically averaged)fields are actually defined.
The standard example is provided by a plane electromagnetic wave of wavelengthλ propagating in a transparent
medium, inwhich case d1 is the separation distance between themolecules, d3 is on the order of thewavelength,
and d2 is some distance that satisfies the strong inequality, d1= d2= d3.

Of the three scalesmentioned above, the intermediate scale occupies a very peculiar position. Its
characteristic distance has to be sufficiently small for themeasurement process to provide the detailed
description of the system at hand (say, provide thefield values in the regionwhich is several wavelengths long),
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and yet it has to be sufficiently large for the associated characteristic volume to contain a great number of
microscopic structural elements for the averaging procedure to bemeaningful. Oftentimes, the d2 is not even
explicitlymentioned or discussed, or its justification is sketchy and hand-waving, whichmakes the presence of
the intermediate scale either ambiguous or not immediately clear. In spite of all these imperfections in its
definition, whenever one deals with amedium that is regarded as continuous, the intermediate scalemust always
unreservedly be present. Its very existence, nomatter howhypothetical, is absolutely indispensable for any
‘legitimate’use of continuous electrodynamics. This rather stringent requirement stems from the
epistemological position that, sinceMaxwell’s equations describe experimentallymeasurable quantities, there
should exist a practically realizablemethod of their determination.

On the other hand, we know from everyday experience that too strict adherence to operational definitions is
not at all necessary for the productive development of a theory. Two very instructive examples immediately
come tomind, although they are not directly related to the topic under consideration. Thefirst of them is the
discovery byDirac [8] of his famouswave equation for the electron inwhich there appeared somemysterious
matrices that had no immediate physical interpretation (due to the presence of ‘additional’ components and
indirect relation to the velocity operator). Another example is the experimental interpretation of the eigenvalues
of the position operator for an electron in a hydrogen atom. To determine electron’s position one has to strike
the atomwith highly energetic photonswhichwould destroy the atom, a procedure similar to the one reported
in [9] inwhich the authors used photoionization and an electrostatic lens to directly observe the electron orbitals.
So even though the system in questionwould be destroyed by the actualmeasurement, one still uses the quantum
mechanical language of wave functions and position operators to describe it.

Whenwe turn our attention tometamaterial electrodynamics, we encounter a similar dichotomy.Often,
metamaterial structures consist of just a few layers of artificially created building blocks and therefore cannot be
regarded as three-dimensional continuousmedia for the purpose ofmacroscopic averaging. There is no concept
of intermediate scale here, since the entire width of the system is comparable to the size of the ‘microscopic’
structural element. Nevertheless, when applied to such artificial noncontinuous structures,macroscopic
electrodynamics (togetherwith the standard procedures for retrieval of effectivematerial parameters [10–14])
seems to beworking remarkably well in predicting system’s electromagnetic properties [12, 15–21]; somuch so
that one can’t help wondering if something deep is at play here underlying the theory’s success. These
considerations naturally lead to the question ofwhymacroscopic electrodynamics relates sowell tometamaterial
systems in general, and nanoplasmonic ones in particular. It seems intuitively obvious that at the fundamental
level the concept of scattering should play amajor role in answering this important question. One needs to
decide, however, which specific approach to scattering to take and howmuch rigor to exercise.Much of past
work involved accurate and detailed studies of scattering on individual structural elements, taking into account
some nontrivial near-field effects, followed by careful statistical averaging to describe the corresponding effective
medium that wouldmimic system’s electromagnetic response (see, e. g., [22–27]). Herewe propose an approach
—somewhat less detailed, but also rooted in scattering and capable of providing some deep physical insight— to
systems inwhich individual plasmonic nanorods (or their simple combinations) play the role of fundamental
structural elements.We are primarily interested in either single sheets of aligned nanorods ormetamaterial
platesmade of corner-stacked nanorods, whichwe propose tomodel—and this is ourmain idea—as planes of
oscillating charges. This approach, whose details will be elucidated below, goes back to Feynman and is based on
his formula for thefield of a plane of oscillating charges, towhichwe now turn.

2.Derivation of Feynman’s formula for thefield of a plane of oscillating charges

2.1. Preliminary considerations
Weassume the reader is familiar with Feynman’s semi-intuitive derivation of his formula for the field of a plane
of oscillating charges (see equations (9) and (24) below) as presented in [28]. The derivationmisses some
important stepswhichwe aim tofill in here first, before discussing some applications in nanoplasmonics.

The importance of Feynman’s formula stems from its use in explaining the physical origin of the refractive
index of a dielectricmediumwhose underlying structural elements (e. g., atoms)may conveniently be described
by theDrude-Lorentz oscillatormodel. To showhow light ‘slows down’ in a dielectricmaterial, Feynman ([28],
Ch. 31) treats the field of the transmitted electromagnetic wave as consisting of two parts: the original (incoming)
wave and the radiation field of all harmonically driven charges comprising thematerial. He then subdivides the
charges into a great number of planar sheets and asks for the contribution by one such sheet, at which point the
formula for thefield of an oscillating plane naturally enters the discussion. In Feynman’s analysis the dielectric
material is not regarded as amedium per se, but as a large collection of charged particles sprinkled around and
scattering light in a vacuum, with all thefields propagatingwith the same limiting speed, c. The apparent
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reduction in that speed then turns out to be nothing but an interference effect, amathematical fluke,
mathematical curiosity.

Since each oscillating charge can be regarded as an oscillating dipole, p, we begin our derivation of Feynman’s
formulawith the exact expression for thefield of a radiating point dipole valid at any distance, r, regardless of the
wavelength,λ (Coulomb’s constant dropped for notational simplicity andwill be restored later; overdots
indicate differentiationwith respect to time),
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According to (1), in the far zone, the electric field vector E(P, t) evaluated at the observation point P= (x, y, z)
at time t is orthogonal to vector r connecting the dipole toP and lies in the plane spanned by r and tp ̈ ( ),
evaluated at the retarded time τ (with similar interpretations for the near and induction terms). In our problem
all dipoles are assumed to be coherently oscillating in the xy-plane in the direction parallel to the x-axis, as shown
infigure 1. Correspondingly, for points P= (0, 0, z) located on the z-axis, all relevant vectors have components
as indicated in thatfigure, with p(τ)= (px(τ), 0, 0), t t=p p , 0, 0x
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which shows that the y and z components of the electric field change sign under the ¢ « - ¢x x transformation.
Thismeans that they vanish for any distribution of charges symmetric with respect to the y-axis, which can be
understood intuitively by sketching the netfield due to a pair of identical dipoles positioned symmetrically
relative to the y-axis, with one directly above the other (figure 2).

Therefore, only the x component of thefield,
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needs to be kept in our derivation.
The calculation of the totalfield then proceeds by dividing the planar distribution into a series of

infinitesimally thin concentric rings of variable radii s and thickness ds, and then integrating (figure 3).

Figure 1.Geometry of the problem.

3

Phys. Scr. 98 (2023) 125529 AGaliautdinov



For one such ringwe have, on the basis of (4) and using j¢ =x s cos , j¢ =y s sin ,
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where η is the surface density (the number of dipoles per unit area). Taking into account that
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2 2
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2 2 , r2= s2+ z2, sds= rdr, we get

Figure 2.The far field of two symmetrically positioned dipoles has no y and z components. Similar argument applies to the near and
induction fields.

Figure 3.One of the infinitesimal rings used in the integration procedure.
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which, for harmonically oscillating charges with
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In the abovewe used quantummechanical sign convention for frequencyω and kept the upper limit of
integration, a,finite with the intention of distinguishing between two interesting cases: an infinite plane (in
which case a→∞ ) and a disk (inwhich case a remainsfinite). Before proceeding further, let us take a brief look
at Feynman’s own derivation.

2.2. Brief review of Feynman’s ‘proof’
Feynman derived his result (see section 30-7 in [28]),
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byworking in the far zone and using the approximate dipole radiation formula,
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which represents thefield in dipole’s equatorial plane only, thus ignoring the near zone, the induction zone, and
the angular dependence due tomutual orientation of tp ̈ ( ) and n̂ in the far zone (cf. our equation (4)). This leads
to the expression for the totalfield,
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which is not well defined. Tomake sense of the infinite exponent, Feynman regularizes (11) by replacing the
constant surface density ηwith radially tapered density η(r) and then evaluating the integral,

⎧
⎨⎩

⎫
⎬⎭

ò åh h

h h h

h
h

h
h

h

» D

= D + + D D + + D D +

= D + D
+ D

+ D
+ D

+

w w

w w w

w w w

¥

+D + D

D D

r e dr r e r

z e r z r e r z r e r

z e r r
z r

z
e r

z r

z
e

2 ...

2
... , 13

z

i c r

j
j

i c r
j

i c z i c z r i c z r

i c z i c r i c r

2

2

j( ) ( )

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )

( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )

graphically by adding up small arrows of slowly decreasing length that represent the complex-valued terms
in the curly brackets of the Riemann sumabove. By depicting this process infigure 4we immediately see that the
integral is equal to i(c/ω)η(z) e i(ω/ c) z, which corresponds to setting the infinite exponent in equation (12) to
zero, thus recovering equation (9).

2.3.Derivation continued
Wenow return to our expression (8) and regularize it à la Feynman by replacing the constant density ηwith the
tapered onewhichwe choose to be in the form,
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which allows us to interpret Feynman’s regularization procedure asWick rotation in the complex r-plane (see
alsofigure 6 and equation (22) below). Next,
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Figure 4. Feynman’s approach to evaluating ò h w¥
r e dr

z
i c r( ) ( ) with the help of a radially tapered surface density η(r) as given in

equation (13).
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where Ei(ξ) is thewell-known exponential integral [29],
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The restriction on the argument is due to the standard choice of the branch cut thatmakes the integral single-
valued (figure 5).

We can view Ei(ξ) as accumulation function for f (ζ)= e ζ/ζ along a path (call itΓ) running from−∞ to ξ in
the complex ζ-plane. The choice of this defining path is not unique.Onemay deform the path arbitrarily as long
as it originates at the ‘left’ infinity and does not cross the branch cut. A simple example is provided by the semi-
infinite straight segment G¢ that runs parallel to the real axis and is described by z x-¥ < Re Re( ) ( ),

z x=Im Im( ) ( ). Based on this observationwe can see that the limit of Ei(ξ) as ξ→∞ along the ray shown in
figure 6 is equal to zero,
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With this result at hand, we are ready to complete our derivation (see equations (8) and (20)).

2.4. Infinite plane
In the case of infinite planewe take the double-limit in (20) using (22) byfirst letting a→∞ and thenα→ 0.
This immediately gives,
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Figure 5. Sketch of two alternative paths in the complex ζ-plane defining the exponential integral function Ei(ξ).

Figure 6.The limit of Ei(ξ) as a →∞ along the ray x a= - wi a
c

( ) is zero, equation (22).
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2.5. Finite disk
In the case of afinite disk (of radius b)we setα= 0 in (20), keeping a and zfinite, as shown infigure 7. This gives,
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which is valid everywhere on the symmetry axis. Notice that this expression vanishes in the limit z→∞ (via
 0). Also, in the limit b→∞we get equation (24) for the infinite plane, providedwe formally set e i∞ in

to zero.
For the farfield, withλ/z= 1, b/z= 1 (with no additional restriction on b), using approximation a≈ z
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and the corresponding (unnormalized) intensity,
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whereπb2 is the area of the disk. If, in addition, we impose a stronger condition b2/(λz)= 1, we recover the
intuitively anticipated result,
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for a ‘point-like’ disk of total chargeQ viewed from a very large distance. The predicted intensity of disk’sfield,
 z 2∣ ( )∣ , as the function of the distance, z, in a realistic experimental regime described by equation (26) is shown
infigures 8 and 9.

It is interesting to notice that for distances z> z0≡ b2/λ the radiation intensity ceases to oscillate. This
corresponds to the condition (see figure 7),

l l l
D

º
-

» º <
a z b

z

z

z2 2
1, 30

2
0ℓ ( )

inwhich case the path length difference,Δℓ= a− z, between the outermost and central dipoles is less than the
wavelengthλ for any such z. This results in a very slow change of the interference patternwith distance, which
makes the ‘last’ oscillation of combined intensity ‘stretch out’ all theway to spatial infinity (z→∞ infigure 8).

Figure 7.Radiating disk of radius b.
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Before concluding this section, let usmake amental note that the expression for thefield given by Feynman’s
formula is proportional to the retarded velocity of the oscillating charges, or, equivalently, to the corresponding
retarded electric current. The appearance of the current is not too surprising andmay be traced to amore
traditional approach to scattering on two-dimensional structures, as we briefly outline in appendix A.Whenwe
come to discuss electrodynamics of chiralmedia, this result, properly generalized, will play a central role in
connecting our theory to the previously publishedwork onmetamaterial nanoplasmonics. Such connection is
possible becausewithin the Born-Kuhnmodel of optical activity the very definition of optical rotatory dispersion
is given in terms of the bound currents induced in thematerial by the incident electromagnetic wave (see, e. g.,
discussion in [30]).

Figure 8.Blue curves: predicted behavior of the radiation intensity,  z 2∣ ( )∣ (on the symmetry axis, at points P = (0, 0, z)), as the
function of the distance, z, from a uniformdisk of identical oscillating dipoles, as described by equation (26). Here,λ = 632.8 nm is
the radiationwavelength and b is the radius of the disk.Orange curves: asymptotic behavior of  z 2∣ ( )∣ at large z, as given by
equations (28) and (29). Compare withfigure 9.
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3. Applications inmetamaterial nanoplasmonics

3.1. Laser beam striking a sheet of aligned plasmonic nanorods
Assumenow that the radiating disk offinite radius b is artificially induced by a uniform laser beamofwavelength
λ= 632.8 nm (He–Ne laser, red) and cross-sectional radius b= 1 mmstriking infinitesimally thin sheet of
dipoles, such as a layer of plasmonic nanorods, as depicted infigure 10. Assume also that the observation pointP
is chosen, say, anywhere between 0.25 to 6.5meters from the sheet. In that case,

w p l p= = ´b c b2 2 1580, 31( )

and

l l< < < < =b z b z b0.00015 0.004, 0.24 6.3, 1.58 m, 322 2( ) ( )

sowe are in the experimental situation described by equation (26). For Implementation I, inwhich the field
measurements aremade in the reflected beam, the predicted intensity,  z 2∣ ( )∣ , as the function of the distance, z,
is given infigure 8 (providedwework at nearly normal incidence).

Despite the high sensitivity of the intensity pattern to the values of the beam’s diameter, the proposed setup
seems to bewithin an easily realizable range of experimental parameters, which shouldmake the observation of

Figure 9.Radiation intensity,  z 2∣ ( )∣ , in the xz-plane, as the function of the distance, z, from a uniformdisk of identical oscillating
dipoles, found by numerical integration of equation (1). Here,λ = 632.8 nm is the radiationwavelength and b = 1 mm is the radius
of the disk, so that z0 ≡ b2/λ = 1.58028m. (In the yz-plane the plot is identical, and in any other plane is similar, to this one.)
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this interference effect relatively straightforward. [Wenote in passing that the reason for usingmetallic systems,
rather than, say, dielectric ones, is not amatter of principle (our theory is equally applicable to dielectric systems
aswell), but the practical one. Because of very high density of quasi-valence electrons, the induced electric
moments in plasmonic nanorods aremany orders ofmagnitude greater than in the dielectric ones, which leads
to amuch stronger optical response. Typical resonant wavelengths in such systems (usually, gold and silver) are
on the order of a few hundred to a couple thousand nanometers [21, 30–36], which can be adjusted by varying
nanorod dimensions, allowing experiments at optical to near-infrared frequencies. Herewe visualize a simplified
scenario inwhich the nanorods are not too densely packed, potentiallymissing on some interesting
contributions coming from various nearfield interaction effects (see, e. g., [22, 23]; also appendixA). In addition,
since our derivation assumes point-like dipoles, the size, d1, of the nanorods is restricted by the condition
d1= λ, which also sets the scale for their separation distance (see discussion around equations (56), (57)).
Correspondingly, in experiments described by our theory, d1 ranges between a few to a few tens nanometers.
Packing closer than that would push us into the regime of continuous electrodynamics, rendering our approach
inapplicable.]

For Implementation II, inwhich the fieldmeasurements aremade in the transmitted beam, the net field atP
is the sumof the incomingwave w- -  e,x y

i t z c( ) ( ) and the radiationfield of the oscillating disk. The equation of
motion for a driven dipole in this case is

g w+ + = w-x x x q m e , 33x
i t

0
2̈ ( ) ( )

whereω0 is the natural frequency of the equivalentDrude-Lorentz oscillator, γ is the damping coefficient, and
q/m is the charge-to-mass ratio. Denoting

w w gwW º - - i , 342
0
2 2 ( )

we get the steady state solution,

= =
W

w- x t x e x
q

m
, , 35i t

x0 0 2
( ) ( )

which, on the basis of (26), gives the total transmitted field,

w w
= = º +

W
w w- - - -    E z t z e E z t e z i

D

c
z, , , , 1

2
, 36x x

i t z c
y y

i t z c p1
2

2
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

Figure 10. Schematics of the experiment inwhich radiating disk of oscillating dipoles is effectively generated by a laser beam that
either (I) is scattered (at nearly normal incidence) by, or (II) passes through, a two-dimensional sheet of aligned plasmonic nanorods.
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where = 1 for awide beam and = - p l z e1 i b z2( ) ( ) for a narrow beamof cross-sectional radius b. In the
above, we formally introduced the plasma frequency (withCoulomb’s constant restored) for a single sheet of
nanorods, hence subscript 1 (cf. (49)),

w
h
e

º
q

mD
, 37p1

2
2

0

( )

whereD is the thickness of themetamaterial plate (practically, nanorod’s cross-sectional diameter) and ε0 is the
electric constant. Notice that a single layer of aligned nanorods is functionally equivalent to a birefringent plate.
Also notice that the transmission amplitude can bewritten in a slightly different form,

ww
= +

¢

W
 z i z1 , 38

p1

2
( ) ( ) ( )

in terms of a different characteristic frequency (primed plasma frequency),

w
h
e

¢ º
q

mc2
, 39p1

2

0

( )

whichmay be useful in some contexts, though inwhat followswewill adhere to traditional definition.
The ‘usual’ theory based onmacroscopic electrodynamics is recovered by setting = 1 (wide beam) and

introducing the quantity whichwemay call the index of refraction (for lack of a better word),

w
º +

W
n 1

2
, 401

p1
2

2
( )

which forω far from resonantω0 corresponds approximately to the permittivity of theDrude-Lorentzmodel,
e w» = + Wn 11

2
DL p1

2 2. In the absence of losses (γ= 0) and forω= ω0, the index of refraction is real and
positive, so for an x-polarizedwavewe get,

⎜ ⎟⎛
⎝

⎞
⎠

⎧
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⎡
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⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

w
w= +

-
» - - - -w- - E z t

i n D

c
e i t

z
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c
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1
exp , 41x x
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x

1
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( ) ( ) ( )( )

which shows an increase in the optical path-length due to an effective reduction in phase velocity (from the
original c down to c/n1)when propagating through the plate, in agreement with Feynman’s reasoning ([28], Ch.
31). In the case of a narrow laser beam, using = - p l z e1 i b z2( ) ( ) and assuming γ= 0 in equation (36), we get
for transmitted radiation intensity,
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which is depicted infigure 11. [If the rods are deposited on a very thin transparent dielectric substrate then an
extra term involving the effective ndielectric of thematerial should be included in equations (36) and (41) to
account for additional increase in the corresponding optical path-length. If a thick substrate is employed then
transmitted intensity should bemodified using Fresnel’s coefficients familiar from continuous
electrodynamics.]

3.2. Laser beam striking a chiral plate
The two-dimensional Born-Kuhn (BK) oscillatormodel [37, 38] (also [39, 40]) represents a chiral block (the
fundamental structural element of a chiralmedium) by two coupled charged harmonic oscillators, one at z= 0
and the other at z= d, displaced as depicted infigure 12 and subjected to a plane electromagnetic wave of
frequencyω andwave number k= ω/c propagatingwith the limiting speed c along the z-axis. The charges are
restricted tomove in the x and y directions, respectively, inwhich case their equations ofmotion are given by

g w w

g w w

+ + + =

+ + + =

w

w

-

- -





x x x y q m e

y y y x q m e

,

, 43

x
i t

y
i t kd

0
2

c
2

0
2

c
2




̈ ( )
̈ ( ) ( )( )

whereωc is the coupling frequency and  ,x y( ) are the amplitudes of the x and y components of the electric field
in the incomingwave. Using the steady stateAnsatz,

= =w w- - -x t x e y t y e, , 44i t i t kd
0 0( ) ( ) ( )( )

the equations ofmotion can bewritten inmatrix form,
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with the solution,
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The net field at the observation point is the sumof the incoming field and thefield of all radiating charges,
viewed as two planes of pairwise coupled BK oscillators, which gives, using our generalization of Feynman’s
formula (26),

⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
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⎫
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w w

w
w
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e z e,
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4

c
2

2
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Figure 11.Predicted transmitted intensity, = T z z 2( ) ∣ ( )∣ (unnormalized), as the function of the distance, z, equation (42), for an x-
polarized laser beampassing through a sheet of aligned plasmonic nanorods (Implementation II). Beamparameters:λ = 632.8 nm,
b = 1 mm,with arbitrarily chosen (n1 − 1)ωD/c = 0.1 (red curve, corresponding toω0 > ω) and (n1 − 1)ωD/c = − 0.1 (blue curve,
corresponding toω0 < ω).

Figure 12. Schematic representation of the fundamental structural element (the ‘chiral block’) of a gyrotropicmetamaterial in
accordance with the two-dimensional Born-Kuhn oscillatormodel. One possible implementation of themodel consists of a single
layer of such blockswhich, in turn, can be visualized as beingmade of two planes of pair-wise coupled harmonically oscillating
charges.
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where = 1 for awide and = - p l z e1 i b z2( ) ( ) for a narrow beam, respectively, with the plasma frequency
nowdefined by (cf. (37)),
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In actual experiments, a BK chiral block ismade of two identical corner-stacked ‘vertically’ displaced
plasmonic nanorods that are coupled either capacitively or conductively through theirmutual near-field
interaction [31] (for an earlier theoretical proposal involving inductive coupling see [41]). In addition, in order
to avoid anisotropy effects that lead to polarization conversion, the nanorods are arranged inC4-symmetric
configurations (with four nanorod pairs at a time), forming square-shaped ‘supercells’ out of which
metamaterial plates are constructed (figure 13; for details see [31]).

The corresponding equations ofmotion for pairs 1 and 2 are then (notice the physicallymotivatedminus
signs in front of some of the coupling terms),
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with the solution,
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and similarly for pairs 3 and 4. Taking into account that d= z, so that - » z d z( ) ( ), we get the total
transmitted field,
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Figure 13.Top viewof ametamaterial supercell consisting of four Born-Kuhn chiral blocks arranged in aC4-symmetric
configuration.
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Because the BKmodel ignores any coupling between different chiral blocks, tomake it physically reasonable
we have to assume that the separation distance d between nanorods in a given BKpair ismuch smaller than the
distance d1 between nearest such pairs (figure 13). Therefore, in the context of Feynman’s approach, the distance
d1 should be viewed as the effective size of individual dipoles that appear in the derivation of his formula. Since
that derivationwas performed under the assumption of point dipoles, we have to assume that d1= λ and, thus,
d= λ, or kd= 1. Correspondingly, from the point of view of a single chiral block, we are in the long-wavelength
(or, quasi-static) limit, inwhich case wemay set

»kd kdsin , 58( ) ( )

and get,
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wherewe formally introduced susceptibility and the nonlocality (or, gyration) parameter,
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tomake connectionwith their counterparts in the Born-Kuhnmodel [31, 39] (the factors of 4 are due to the
number of chiral blocks in the supercell). Additionally, if the twoBKplanes of coupled nanorods are separated
by a transparent dielectric layer (of thickness d= λ) then, following Feynman’s ideology, wemay treat such a
layer as another plane of oscillating charges with effective susceptibilityχdielectric and get (ourmain result),
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where

c c c= + . 64dielectric˜ ( )

Diagonalization of the system (62), (63) immediately gives the two eigenmodes (the left (LCP) and the right
(RCP) circularly polarized electromagnetic waves) and their respective eigenvalues, L,R,
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where 0 is the amplitude of the incomingwave.When thesemodes pass through a BKplate, their polarization
stays the same, while the amplitude ismultiplied by the corresponding eigenvalue (cf. Equation (36)), which
therefore determines the transmitted intensity (as a function of the distance),  zL,R

2∣ ( )∣ .
Introducing two ‘brightness’ amplitudes,
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which characterize contributions to the respective transmittedmodes due to the radiating (portion of the)BK
plate, we can define two additional experimentally relevant quantities: differential brightness (which generalizes
to narrow beams the concept of optical rotatory dispersion (ORD), cf. Equation (S20.2) in [30]),

w w
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and differential absorbance (which generalizes the concept of circular dichroism (CD), cf. Equation (7) in [31]),

w w
~ D º - G¢¢ ¢ + G¢ ¢¢ A z

d

c c
z zCD

2
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wherewe used primes to indicate the real and imaginary parts of various quantities involved, c c c= ¢ + i ,
G = G¢ + Gi , = ¢ +   i . It is then straightforward to showusing simple algebra that (unnormalized)
transmitted differential intensity is given by
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which is plotted for a laser beamof finite width infigure 14. For awide beam ( = 1) this becomes z-
independent,
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as shown infigure 15.Notice that for sufficiently small values of kd, when damping becomes dominant, the
numerator in (70)may become negative andwe get abnormal behavior ofΔT (though the effect is expected to be
quite weak), as shown infigures 16 and 17.

Finally, for an incoming beam linearly polarized along the x-axis, with = x 0, = 0y , the corresponding
transmitted field is elliptically polarized and is given by
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If weworkwith awide beam (b=∞ , = 1), assume no losses (γ= 0), and takeω to be far from each of the

two resonances, w w w=  0
2

c
2 , then theχ-dependent term can be dropped (with elliptical polarization

degenerating into linear), andwe get the standard expression for polarization rotation angle,
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where theminus sign is due to our left-handed choice for the chirality of the BKplate. SupplementalMovies 1, 2,
and 3 showhow, in accordancewith our theory, linearly polarized electromagnetic waves of different frequencies
change their polarization upon passing through a chiral plate located at the origin. (The incident and transmitted
amplitudes inMovies 2 and 3 have been re-scaled differently to enhance visualization.)

4. Summary

Wedeveloped a simple physicallymotivated theoreticalmethod for the analysis of electromagnetic processes in
nanorod-based plasmonicmetamaterials that is not rooted inmacroscopic electrodynamics. Specific
predictionsweremade for a single sheet of aligned nanorods and for a chiral platemade of corner-stacked
nanorods, which can easily be extended tomore complicatedmulti-stacked structures consisting of dipole-like
basic elements.We proposed several interference experiments to test our theory that can be performed using
readily available equipment. Due to high sensitivity of the predicted interference patterns to small changes in
various system’s parameters (such as, e. g., surface density of the deposited nanorods or resonant frequencies of
individual nanorods) the proposed experimental implementations could potentially be used in the development
of quality standards for variousmetamaterial devices. In principle, our approach should also be able to handle
systems that exhibit nonlinear and higher-ordermultipole behavior, though themathematical details
accompanying such generalizationmay likely become rather complicated.

Figure 14.Transmitted differential intensity,ΔT(z), on the symmetry axis as predicted by equations (65), (69), for a laser beamof
cross-sectional radius b, with = - p l z e1 i b z2( ) ( ), passing through aC4-symmetric BKplate.Here, b/d = 100000, kd=0.1,ωp/
ω0 = 2, γ/ω0 = 0.05,ωc/ω0 = 0.4, andχdielectric = 0.5.

16

Phys. Scr. 98 (2023) 125529 AGaliautdinov



Figure 15.Transmitted differential intensity,ΔT, as predicted by equation (70), for awide beam (b = ∞ , = 1)passing through a
C4-symmetric BKplate. Here, kd = 0.1, 0.05, 0.025,ωp/ω0 = 2, γ/ω0 = 0.05,ωc/ω0 = 0.1 (red), 0.2 (orange), 0.3 (green), 0.4 (blue),
andχdielectric = 0.5.

Figure 16.Abnormal behavior of transmitted differential intensity,ΔT(z), as predicted by equations (65), (69), for a laser beamof
cross-sectional radius b, with = - p l z e1 i b z2( ) ( ), passing through aC4-symmetric BKplate.Here, b/d = 100000, kd=0.01,
ωp/ω0 = 2, γ/ω0 = 0.05,ωc/ω0 = 0.4, andχdielectric = 0.5.
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AppendixA. Elementary theory of scattering on a plane of charges

Here for the sake of completeness we re-derive equations (36) and (47), (48) in the case of awide beam (b=∞ ,
= 1) using amore traditional approach to scattering.Our discussion parallels that of [42].
For harmonically oscillatingfields,E,B, charges, ρ, and currents, j,Maxwell’s equations take the form

(Coulomb’s constant dropped, themagnetic fieldB is re-scaled by the speed of light c),

w pr w =E r r, 4 , , A1· ( ) ( ) ( )

w
w

w ´ =E r B r
i

c
, , , A2( ) ( ) ( )

w =B r, 0, A3· ( ) ( )

w
w

w
p

w ´ = - +B r E r j r
i

c c
, ,

4
, . A4( ) ( ) ( ) ( )

If we assume a scenario inwhich a plane electromagnetic wave propagating in the positive z-direction strikes at
normal incidence infinitesimally thin (essentially, δ-function like) slab of somematerial located at z= 0, then for
points outside of the xy-plane the solution is
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and similarly for themagnetic field, with

= - =   , , A6x
i

y
i

y
i

x
i ( )( ) ( ) ( ) ( )

= = -   , , A7x
r

y
r

y
r

x
r ( )( ) ( ) ( ) ( )

= - =   , , A8x
t

y
t

y
t

x
t ( )( ) ( ) ( ) ( )

and the boundary conditions at the interface,
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where  i r t, ,( ) and  i r t, ,( ) are the incident, reflected, and transmitted amplitudes, respectively, and  ,x y( ) is the
bound surface current density. Combining all these relations gives the boundary conditions in terms of the
electric field only,
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Figure 17.Abnormal behavior of transmitted differential intensity,ΔT, as predicted by equation (70), for a wide beam (b = ∞,
= 1)passing through aC4-symmetric BKplate.Here, kd=0.01,ωp/ω0 = 2, γ/ω0 = 0.05,ωc/ω0 = 0.1 (red), 0.2 (orange), 0.3

(green), 0.4 (blue), andχdielectric = 0.5.
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which for transmitted amplitudes become

p p
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y ( )( ) ( ) ( ) ( )

For a single sheet of aligned nanorods, we get on the basis of equation (35),
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which upon restoring Coulomb’s constant recovers equation (36)with = 1 (wide beam). Notice that in our
derivationwe assumed that the nanorodswere not densely packed andwere driven by the local field, which,
following standard practice [39, 40], we took to be  x

i( ). This is in contrast with the tightly packed scenariowhich
would typically be handled usingmacroscopic electrodynamics by taking

s=  , A15x x x
t ( )( )

whereσx is the conductivity, with the result (see equation (1) in [43]),
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The tightly packed scenario clearly allows the possibility of zero transmission for very largeσx (think of
aluminum foil reflecting all incident light, for example). In our theory that situationwould roughly correspond
to
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[compare with equation (A13) above], which after restoringCoulomb’s constant would give,
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in agreementwith equation (36).
For a chiral plate viewed as two planes of orthogonally oscillating charges, thefirst set of boundary conditions

is
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while the second is shifted in phase,
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which on the basis of (44) and (46) give
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recovering equations (47) and (48) in the case of awide beam.
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