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Abstract
During the operation of a localized surface plasmon resonance (LSPR) sensor made in the form
of a core–shell nanoparticle with the shell acting as a sensing layer, the target molecules
penetrate into the shell due to intrinsic diffusion or reaction mechanisms. As a result, these
molecules or various reactants are nonuniformly distributed in the shell layer. Such sensing
particles are termed composition graded plasmonic particles, and their LSPR characteristics may
be quite different from those of the uniform core–shell particles. Here, under the quasi-static
assumption, a perturbation theory is developed to predict the LSPR properties of composition
graded plasmonic particles. The effects of the composition gradient on the LSPR properties due
to a metal hydride, a dielectric, and an effective medium are either numerically calculated or
analytically derived. Our results show that various configurations of the composition gradient
can tune the location and the amplitude of the LSPR peak. The results are important for
understanding the sensing performance of composition graded plasmonic particles, and the
perturbative treatment presented here can also be used for other composition graded structures.

Keywords: localized surface plasmon resonance, quasi-static approximation,
perturbation theory, composition graded plasmonic particles

(Some figures may appear in colour only in the online journal)

1. Introduction

The plasmonic properties of metallic nanoparticles (NPs) have
been extensively used in designing new optical devices, chem-
ical and biological sensors, photocatalysts, disease treatment,
etc [1, 7, 10–12, 15, 18, 22]. Various types of NPs, such as solid
spheres, spherical shells, core–shell spheres, nanorods, cylin-
ders, rings, triangles, etc have been systematically investig-
ated both theoretically and experimentally [5–7, 12, 20]. How-
ever, recently another kind of NPs, called composition graded
plasmonic NPs, has emerged and demonstrated to have some
unique optical properties. For example, Larsen and Zhao fab-
ricated multilayered composition graded Ag–Cu nanotriangle
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arrays using nanosphere lithography and co-deposition and
found that the localized surface plasmon resonance (LSPR)
sensitivity could be improved by a factor of two compared to
pure Ag nanotriangle arrays of the same size and thickness
[8]. In addition, for some LSPR chemical sensing applications,
the resulting plasmonic structures are intrinsically composi-
tion graded structures. For example, for plasmonic hydrogen
sensors (PHSs), either metal or metal alloy plasmonic struc-
tures have been used and changes in their plasmonic optical
properties during hydrogenation have been investigated [1, 4,
23]. According to the hydrogenation kinetics, for a metal NP,
the hydrogenation process experiences four stages [1, 16, 25]:
(a) hydrogen adsorption, in which hydrogen is physiosorbed
on the metal surface before diffusing into the metal; (b) hydro-
gen nucleation, in which hydrogen begins to react with the
metal to form metal hydride at the appropriate temperature
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and pressure, with random hydride patches being formed on
the metal surface; (c) hydrogen coalescence, when the hydride
patches coalesce and form a hydride shell around a metal
NP; (d) hydride shell thickening, in which subsequent metal-
hydrogen reactions take place increasing the hydride shell
thickness. Thus, during the sensing procedure, the sensing
layer becomes a composition graded structure, which motiv-
ates a more systematic investigation into the optical and plas-
monic properties of the composition graded NPs. In this
paper, under the quasi-static assumption, a perturbation the-
ory is developed to predict the LSPR properties of composi-
tion graded plasmonic NPs. The perturbation solution for the
polarizability is convergent to the exact solution when higher
order perturbation terms are included. The results show that
the detailed configurations of composition gradient can tune
the location and the amplitude of the LSPR peak.

2. Quasistatic perturbation theory for a
core-gradient-shell NP

Let us consider a ‘core-gradient-shell’ (CGS) NP as shown in
figure 1. The particle has a uniform core (Region 1) of radius
ac and position-independent dielectric function εc, and a shell
(Region 2) of outer radius awhose dielectric function ε(r) var-
ies with a radial distance r. Region 2 represents the compos-
ition graded layer, or the active layer for sensing. The entire
particle is immersed in a uniform medium (say air or some
liquid, Region 3) with the dielectric constant εm. This CGS
particle is interacting with a plane electromagnetic wave of
wavelength λ propagating along the vertical direction with the
incident electric field, E⃗0, oscillating along the z-axis, as shown
in figure 1. The optical properties of the particle can be determ-
ined in the quasi-static approximation by assuming a≪ λ and
finding the electric potential ϕ(r,θ) in the core, the shell, and
the outside medium [7, 12]. In the quasi-static approximation,
the potential in Regions 1 and 3 satisfies the Laplace equation,

∇2ϕ(r,θ) = 0, (1)

with

ϕ1(r,θ) =
∞∑
n=0

Anr
nPn(cosθ), 0< r< ac, (2)

ϕ3(r,θ) =
∞∑
n=0

[
Fnr

n+Gnr
−(n+1)

]
Pn(cosθ), a< r<∞,

(3)

where Pn(cosθ) is the Legendre polynomial of order n, θ is
the angle between the z-axis and the vector r⃗ pointing towards
the observation point P, and An, Fn, Gn are the coefficients to
be determined from the boundary conditions. In Region 2, the
potential satisfies the equation,

∇· [ε(r)∇ϕ(r,θ)] = 0, (4)

which, in general, cannot be solved analytically. To obvi-
ate this problem, we have developed the perturbation theory
which is relevant to and motivated by actual experiment. In
the majority of sensing applications, the change in the dielec-
tric permittivity is typically small compared to its initial value.
This immediately suggests that the permittivity of the gradient
region can be written as

ε(r) = ε(0) + δε(r), |δε(r)| ≪ |ε(0)|, ac < r< a, (5)

where ε(0) is the initial r-independent permittivity, and δε(r)
is the r-dependent change of permittivity after sensing. Thus,
the potential in equation (4) can be written in the form of a
series,

ϕ(r,θ) = ϕ(0)(r,θ)+ϕ(1)(r,θ)+ϕ(2)(r,θ)+ . . . , (6)

where ϕ(1) ∼ δε, ϕ(2) ∼ δε2, etc. The solution can be further
simplified by assuming that it has the ‘dipole’ form,

ϕ(r,θ) = f(r)cosθ, (7)

where now

f(r) = f(0)(r)+ f(1)(r)+ f(2)(r)+ . . . . (8)

The reason for adopting the dipole Ansatz is based on the
following argument: the number of boundary conditions in our
problem, including the one condition at infinity, is equal to
five (see the text around equations (23) and (24)), which fixes
the five constants in the harmonic expansion; if by setting the
remaining constants to zero we somehow manage to find an
acceptable solution then, by the uniqueness theorem of elec-
trostatics, we can be certain that this solution is unique and rep-
resents the actual solution to our problem (also see appendix).

Plugging equation (7) in equation (4) we get the following
differential equation for f (r),

ε(r)

[
f ′ ′(r)+

2
r
f ′(r)− 2

r2
f(r)

]
+ ε ′(r)f ′(r) = 0, (9)

where prime ′ indicates differentiation with respect to r. Com-
bining equations (5), (8) and (9), we find, upon separating dif-
ferent orders, the following sequence of equations,

0th : f ′ ′(0) +
2
r
f ′(0) −

2
r2
f(0) = 0, (10)

1st : f ′ ′(1) +
2
r
f ′(1) −

2
r2
f(1) =− δε ′

ε(0)
f ′(0), (11)

2nd : f ′ ′(2) +
2
r
f ′(2) −

2
r2
f(2) =

δεδε ′

ε2(0)
f ′(0) −

δε ′

ε(0)
f ′(1), (12)

· · ·

2



J. Phys. D: Appl. Phys. 56 (2023) 055102 A Galiautdinov and Y Zhao

Figure 1. Schematic representation of a core-gradient-shell nanoparticle subjected to the electric field, E⃗0 (red arrows), of an incoming
electromagnetic wave propagating along the vertical direction. Here, z is the polarization direction, r is the radial distance from particle’s
center, O, to the point of observation, P, and θ is the corresponding polar angle. In the context of plasmonic hydrogen sensors, the core
(Region 1) has radius ac and is made of plasmonic metal, e.g. silver (Ag), with a fixed and r-independent permittivity, εc. The shell (Region
2) has outer radius a and is made of some easily hydrogenated metal, say, palladium (Pd), whose permittivity, ε(r), changes and becomes
r-dependent during the hydrogenation process. When the loading ratio (the number of hydrogen atoms per metal atom in the lattice) is
relatively small, shell’s permittivity differs from metal’s original permittivity by a relatively small amount, which motivates the development
of a perturbation theory.

Let us concentrate on the linear approximation to f (r), and,
correspondingly, to ϕ(r,θ). Here, we only need the general
solution to equation (10), which is

f(0)(r) = Br+
C
r2

, (13)

with B and C being some constants, and a particular solution
to equation (11), which is

f(1)(r) =−y1(r)
ˆ r

ac

y2(x)g(1)(x)

W(y1(x),y2(x))
dx

+ y2(r)
ˆ r

ac

y1(x)g(1)(x)

W(y1(x),y2(x))
dx, (14)

where g(1)(r) =−δε ′(r)f ′(0)(r)/ε
(0), and y1(r) = r, y2(r) =

1/r2 are the fundamental solutions of the homogeneous
equation, f ′ ′(1) +(2/r)f ′(1) − (2/r2)f(1) = 0, whose Wronskian

is W(y1(r),y2(r)) =−3/r2. Then,

f(1)(r) =−r
ˆ r

ac

1
x2

(
−δε ′(x)

ε(0)

)(
B− 2C

x3

)(
−x2

3

)
dx

+
1
r2

ˆ r

ac

x

(
−δε ′(x)

ε(0)

)(
B− 2C

x3

)(
−x2

3

)
dx,

(15)

which gives (after integration by parts), in linear order,

f(r)≈ f(0)(r)+ f(1)(r) = Br(1+ b(r))+
C
r2

(1+ c(r)) , (16)

where

b(r) =
δε(ac)

3ε(0)

(
1− a3c

r3

)
− 1

ε(0)r3

ˆ r

ac

δε(x)x2dx,

c(r) =
2δε(ac)
3ε(0)

(
1− r3

a3c

)
+

2r3

ε(0)

ˆ r

ac

δε(x)
x4

dx. (17)

Additionally, the derivative of f (r) is

f ′(r) = B(1+ b(r)+ rb ′(r))− 2C
r3

(
1+ c(r)− rc ′(r)

2

)
,

(18)

where

b ′(r) =− 1
ε(0)r

(
δε(r)− δε(ac)

a3c
r3

)
+

3
ε(0)r4

ˆ r

ac

δε(x)x2dx,

c ′(r) =
2

ε(0)r

(
δε(r)− δε(ac)

r3

a3c

)
+

6r2

ε(0)

ˆ r

ac

δε(x)
x4

dx.

(19)

Following the discussion in [12] and our perturbative
approach, the potentials in the three regions of a CGS NP can
be written as

ϕ1(r,θ) = Arcosθ, 0< r< ac, (20)

ϕ2(r,θ) =

(
Br(1+ b(r))+

C
r2

(1+ c(r))

)
cosθ, ac < r< a,

(21)

3
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ϕ3(r,θ) =

(
Fr+

G
r2

)
cosθ, a< r<∞, (22)

where b(r), c(r), b ′(r), and c ′(r) are given in equations (17)
and (19). The boundary condition at infinity gives F=−E0,
and at r= ac and r= a the boundary conditions are

∂ϕ1(ac,θ)
∂θ

− ∂ϕ2(ac,θ)
∂θ

= 0,

εc
∂ϕ1(ac,θ)

∂r
− ε(ac)

∂ϕ2(ac,θ)
∂r

= 0, (23)

∂ϕ2(a,θ)
∂θ

− ∂ϕ3(a,θ)
∂θ

= 0,

ε(a)
∂ϕ2(a,θ)

∂r
− εm

∂ϕ3(a,θ)
∂r

= 0. (24)

In addition,

b(ac) = 0, c(ac) = 0, b ′(ac) = 0, c ′(ac) = 0, (25)

and

b(a) =
δε(ac)

3ε(0)

(
1− a3c

a3

)
− I(1)

1

ε(0)a3
,

c(a) =
2δε(ac)
3ε(0)

(
1− a3

a3c

)
+

2a3I(1)
2

ε(0)
, (26)

b ′(a) =− 1
ε(0)a

(
δε(a)− δε(ac)

a3c
a3

)
+

3I(1)
1

ε(0)a4
,

c ′(a) =
2

ε(0)a

(
δε(a)− δε(ac)

a3

a3c

)
+

6a2I(1)
2

ε(0)
, (27)

where we introduced the two integrals,

I(1)
1 ≡

ˆ a

ac

δε(r)r2dr, I(1)
2 ≡

ˆ a

ac

δε(r)
r4

dr. (28)

Retaining the terms up to linear order in δε, the four bound-
ary conditions lead to the following expressions for the
coefficients,

A/E0 =− 9ε(0)εm(
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

)
+

18εm
((

I(1)
1 /a3

)(
εc + 2ε(0)

)(
ε(0) − εm

)
− a3cI

(1)
2

(
εc − ε(0)

)(
ε(0) + 2εm

))
((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))2 , (29)

B/E0 =−
3
(
εc + 2ε(0)

)
εm(

εc + 2ε(0)
)(

ε(0) + 2εm
)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

)
+

3εm
(
εc + 2ε(0)

)(
εcδε(ac)

(
ε(0) + 2εm

)
+ 2(I(1)

1 /a3)
(
εc + 2ε(0)

)(
ε(0) − εm

))
ε(0)

((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))2
+

6εm fc
(
εc − ε(0)

)(
εcδε(ac)

(
ε(0) − εm

)
− a3I(1)

2

(
εc + 2ε(0)

)(
ε(0) + 2εm

))
ε(0)

((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))2 , (30)

C/E0 =
3a3c

(
εc − ε(0)

)
εm(

εc + 2ε(0)
)(

ε(0) + 2εm
)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

)
−

3a3cεm
(
εc + 2ε(0)

)(
εcδε(ac)

(
ε(0) + 2εm

)
+ 2(I(1)

1 /a3)(εc − ε(0))
(
ε(0) − εm

))
ε(0)

((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))2
−

6a3cεm fc
(
εc − ε(0)

)(
εcδε(ac)

(
ε(0) − εm

)
− a3I(1)

2 (εc − ε(0))
(
ε(0) + 2εm

))
ε(0)

((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))2 , (31)

4
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as well as G/E0 = α/(4π), with the corresponding polarizab-
ility (which is our main result), α, being,

α

4πa3
≈

α(0)

4πa3
+

α(1)

4πa3

=

(
εc + 2ε(0)

)(
ε(0) − εm

)
+ fc

(
εc − ε(0)

)
(2ε(0) + εm)(

εc + 2ε(0)
)(

ε(0) + 2εm
)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

)
+

9εm
(
(I(1)

1 /a3)
(
εc + 2ε(0)

)2
+ 2(a3c I

(1)
2 ) fc

(
εc − ε(0)

)2
)

((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))2 ,

(32)

where fc ≡ a3c/a
3 is the core-to-particle volume ratio, and I(1)

1 ,

I(1)
2 are given in equation (28). Notice that the first term in

equation (32) is the usual expression for unperturbed core–
shell NP [2] (also see appendix, equation (A17)) and the
second term is the linear correction due to the perturbation of
shell’s permittivity. The second order correction can also be
worked out using the general theory, though the calculation is
quite lengthy. The final result is

α(2)

4πa3
=

−3εm

ε(0)
((

εc + 2ε(0)
)(

ε(0) + 2εm
)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))3
×

{
6
(
I(1)
1 /a3

)2(
εc + 2ε(0)

)3(
ε(0) − εm

)
− 12fc

(
a3c I

(1)
2

)2(
εc − ε(0)

)3(
ε(0) + 2εm

)
− 6fc I(1)

1 I(1)
2

(
εc − ε(0)

)(
εc + 2ε(0)

)
×
((

εc + 2ε(0)
)(

ε(0) + 2εm
)
− 2fc

(
εc − ε(0)

)
×
(
ε(0) − εm

))
+
((

εc + 2ε(0)
)(

ε(0) + 2εm
)

+2fc
(
εc − ε(0)

)(
ε(0) − εm

))
×
[(

J (2)
1 /a3

)(
εc + 2ε(0)

)2
+ 4fc

(
a3c J

(2)
2

)(
εc − ε(0)

)2

+2fc
(
2J (2)

3 + 3J (2)
4 − 3J (2)

5

)(
εc − ε(0)

)
×
(
εc + 2ε(0)

)]}
, (33)

where I(1)
1 , I(1)

2 are again given in equation (28), and

J (2)
1 =

ˆ a

ac

(δε(r))2 r2dr, J (2)
2 =

ˆ a

ac

(δε(r))2

r4
dr,

J (2)
3 =

ˆ a

ac

(δε(r))2

r
dr, (34)

J (2)
4 =

ˆ a

ac

δε(r)r2
ˆ r

ac

δε(s)
s4

dsdr,

J (2)
5 =

ˆ a

ac

δε(r)
r4

ˆ r

ac

δε(s)s2dsdr. (35)

3. Core–shell NP with uniformly perturbed shell (no
r-dependence)

To verify that our expressions for polarizability, equations (32)
and (33), make sense, let us consider a very special case with

ε= ε(0) + δε, |δε| ≪ |ε(0)|, δε= constant, (36)

representing a core–shell NP whose shell, while remaining
uniform, has permittivity perturbed by a small but constant
amount. In that situation,

I(1)
1 =

δεa3(1− fc)
3

, I(1)
2 =

δε(1− fc)
3a3c

, J (2)
1 = δεI(1)

1 ,

J (2)
2 = δεI(1)

2 ,

J (2)
3 = (δε)2 ln

(
a
ac

)
, J (2)

4 =
(δε)2

9

[
1− fc
fc

− 3ln

(
a
ac

)]
,

J (2)
5 =− (δε)2

9

[
1− fc − 3ln

(
a
ac

)]
, (37)

and the expression for polarizability becomes,

α

4πa3
≈

(
εc + 2ε(0)

)(
ε(0) − εm

)
+ fc

(
εc − ε(0)

)
(2ε(0) + εm)(

εc + 2ε(0)
)(

ε(0) + 2εm
)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

) + 3δεεm(1− fc)
((

εc + 2ε(0)
)2

+ 2fc
(
εc − ε(0)

)2)((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))2
−

3(δε)2εm(1− fc)
{(

εc + 2ε(0)
)3 − 2fc

[
2(ε(0))2

(
ε(0) + 6εc

)
− ε2c

(
3ε(0) + 2εc + 9εm

)]
+ 4f2c (εc − ε(0))3

}
((
εc + 2ε(0)

)(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

))3 , (38)
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Figure 2. Plots of Im(α)/(4πa3) in the quasi-static approximation for Ag/PdHx core–shell NPs based on equation (32) (zeroth order
approximation, with δε= 0, green; linear approximation, blue), (38) (quadratic approximation, red), and (39) (exact, black). Here,
fc = (3/4)3, εm = 1.0006, and the loading ratios (the number of hydrogen atoms per palladium atom in the lattice) are x= 0.1, 0.2, 0.4, and
0.6.

which is identical to the Taylor expansion of the exact formula,

( α

4πa3

)
exact

=

(
εc + 2(ε(0) + δε)

)(
(ε(0) + δε)− εm

)
+ fc

(
εc − (ε(0) + δε)

)(
2(ε(0) + δε)+ εm

)(
εc + 2(ε(0) + δε)

)(
(ε(0) + δε)+ 2εm

)
+ 2fc

(
εc − (ε(0) + δε)

)(
(ε(0) + δε)− εm

) , (39)

for a core–shell NP given in [2].
To test our approximation scheme, we apply it to a real-

istic situation involving an Ag/PdHx core–shell NP with a
silver core and a homogeneous shell made of hydrogen-
ated palladium. The goal is to compare the imaginary parts
of the core–shell polarizability calculated on the basis of
equations (38) and (39), and then decide if the scheme could
reliably be applied to more complicated CGS scenarios. The
calculations are based on experimental dielectric functions
given in [17, 24]. No size effects, other than the effect of
the volume ratio f c on polarizability, are taken into account.
The numerical results are presented in figure 2. The res-
ults show that, even at relatively large loading ratios (up to
about x= 0.4), the linear approximation works well to pre-
dict the resonant peak’s location (see the blue dashed lines

in figures 2(b) and (c)), but fails at predicting its amplitude.
However, when quadratic correction is also included, the
approximate formula does a good job predicting both, which
gives us confidence that the second order perturbation the-
ory would also work well in gradient scenarios. For a much
higher x (∼ 0.6, see figure 2(d)), the linear approximation
underestimates while quadratic approximation overestimates
the resonant wavelength compared to that given by the exact
solution.

4. Core–shell NP with graded (r-dependent) shell

The above argument validates correctness of equations (32)
and (33). For arbitrary δε(r) we re-write equation (32) as

6
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Figure 3. (a) Plots of Im(α)/(3V) in first-order quasi-static approximation for Ag/PdHx (x= 0.6) core–shell NPs with the linearly and
exponentially graded shells calculated based on equations (40), (42) and (43). (b) The composition gradient induced ε distribution in the
shell for (a). The line styles are consistent with those in (a).

α

3V
=

(
εc + 2ε(0)

)(
ε(0) − εm

)
+ fc

(
εc − ε(0)

)
(2ε(0) + εm)(

εc + 2ε(0)
)(

ε(0) + 2εm
)
+ 2fc

(
εc − ε(0)

)(
ε(0) − εm

)
+

3εm(1− fc)
(
⟨δε⟩

(
εc + 2ε(0)

)2
+ 2fc

⟨
a3a3c
r 6 δε

⟩(
εc − ε(0)

)2
)

[(
εc + 2ε(0))

(
ε(0) + 2εm

)
+ 2fc

(
εc − ε(0)

)
(ε(0) − εm

)]2 ,

(40)

where V= (4π/3)a3, and

⟨δε⟩ ≡ 1
Vshell

ˆ a

ac

δε(r)4πr2dr,⟨a3a3c
r6

δε
⟩
≡ a3a3c
Vshell

ˆ a

ac

δε(r)
r6

4πr2dr, (41)

are the two respective averages over the volume of the shell,
Vshell = (4π/3)(a3 − a3c). Notice that in the uniformly per-
turbed case both averages give δε, which is just a constant,
recovering the first two terms of equation (38).

4.1. Phenomenological model

It is expected that the functional form of δε(r)may affect CGS
particle’s polarizability. Therefore, let us consider two simple
graded shell scenarios: the linearly graded scenario, with

δε(r) = ε(r)− ε(0) =
(
ε̃− ε(0)

) r− ac
a− ac

, (42)

and the exponentially graded scenario, with

δε(r) = ε(r)− ε(0) =
(
ε̃− ε(0)

) e−(r−ac)/r0 − 1
e−(a−ac)/r0 − 1

, (43)

where, in the context of sensor applications for certain concen-
trations of targeting analytes, we may take ε(r= ac) = ε(0),
ε(r= a) = ε̃, and r0 is the characteristic length of the dielec-
tric distribution.

The analytical results for equation (40) based on either
equation (42) or equation (43) are quite complicated and it

is difficult to determine which factor dominates the plasmon
response. Instead, we can numerically explore the effects of
these two gradient scenarios, as depicted in figure 3. We con-
sider a spherical Ag/PdHx CGS NP with fc = (3/4)3 ≈ 0.42,
with Ag as the core and Pd as the shell. During the hydrogen
sensing process, hydrogen will first react with the outer sur-
face of the Pd shell and then diffuse into the Pd layer to form a
hydride gradient. According to figure 2, when x= 0.6, the uni-
form Ag/PdH0.6 core–shell NP causes a significant shift in the
plasmon resonant peak.We can take ε̃≡ εH to be the dielectric
function of PdH0.6, and ε(0) ≡ εPd to be the dielectric function
of Pd. The solid blue curve in figure 3(a) shows the response of
a uniform Ag/PdH0.6. For the NPs with exponentially graded
shells, as shown in figure 3(a) by the red solid, dashed, and dot-
ted curves for r0/(a− ac) = 0.25, 0.5, and 1.0, respectively,
the entire peak is blue-shifted and its amplitude decreases
monotonically, which is converging towards the peak for the
Ag/Pd core–shell as shown in figure 2(d). The correspond-
ing dielectric function distributions are shown in figure 3(b).
When the value of r0/(a− ac) increases, the dielectric func-
tion ε(r) approaches more rapidly ε(0), which means that the
effective depth of hydrogenation in the shell becomes smal-
ler, and the dielectric function changes less effectively at the
core–shell interface. For the linear gradient shown by the
magenta curve in figure 3(a), the peak further shifts to blue
since ε(r) approaches ε(0) faster compared to the exponen-
tial cases. Clearly the results derived from equations (40), (42)
and (43) are in good agreement with the corresponding phys-
ical pictures.

4.2. Drude model approximation

Another scenario, which has theoretical interest, is a core–
shell NP whose core is a metal with its dielectric function
described by the Drude model,

εc = 1−
ω 2
p

ω 2 + iγω
= 1−

(λ/λp)
2

1+ i(γ/ωp)(λ/λp)
, (44)

7
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Figure 4. Plots of Im(α)/(3V) in first-order quasi-static
approximation for Drude core-dielectric shells with uniform,
linearly, and exponentially graded shells calculated on the basis of
equations (40), (42)–(44). Here, ac/a= 3/4, γ/ωp = 0.025,
ε(0) = 2.5, ε̃= 2.55, εm = 1.

where ωp, λp = 2πc/ωp, and γ are the bulk plasmon fre-
quency, plasmon wavelength, and the damping factor for
the metal, with c being the speed of light. The shell is
assumed to be made of a dielectric material with real-valued
permittivity ε(r).

If the shell is uniform and ε(r) = ε is constant, then, assum-
ing γ/ωp is small, according to equation (39), the resonant fre-
quency ω0 is given by

ω0

ωp
≈
√

z
z1

[
1− 1

8
z
z2

(
γ

ωp

)2
]
, (45)

where

z= (2ε+ 1)(ε+ 2εm)
2 − 4f2c (ε− 1)(ε− εm)

2

+ 2fc(ε+ 2)(ε− εm)(ε+ 2εm), (46)

z1 = [(1+ 2ε)(ε+ 2εm)− 2(ε− 1)(ε− εm)fc]
2
, (47)

z2 = [ε(1+ 2fc)+ 2εm(1− fc)]
2
. (48)

The polarizabilities of the CGS NPs of a composition
graded dielectric shell layer with exponential and linear gradi-
ents can be found numerically on the basis on equations (40),
(42) and (43), and are plotted in figure 4. In the calculation, we
set ac/a= 3/4, γ/ωp = 0.025, ε(0) = 2.5, ε̃= 2.55, εm = 1.
Compared to the NP of a metal core with a uniform shell (ε=
ε̃= 2.55, the solid blue curve in figure 4, with λ0/λp = 2.0964
as predicted on the basis of equation (45)), the polarizabilit-
ies of NPs with exponentially graded shells shift to shorter

wavelengths (i.e. blue shift, the red curves in figure 4). In addi-
tion, the resonant peaks of the red solid, dashed, and dotted
curves for r0/(a− ac) = 0.25, 0.5, and 1.0 shift to shorter λ0,
which is consistent with the observation in figure 3(a). Simil-
arly, the linear gradient (the magenta curve in figure 4) shows
the highest blue shift.

4.3. Size effects in the Drude model

It is interesting to investigate the effects of particle’s size on
the position of the LSPR peak. For that, a full scale numer-
ical simulation of electromagnetic scattering on the NP has
to be performed. We found that for our immediate purposes
the STRATIFY package developed in [19], which uses recurs-
ive transfer-matrix method, is very well suited: it is simple,
fast, and reliable. Our simulations, depicted in figure 5, indic-
ate that as the size, a, of the particle decreases the peak shifts
towards the predicted quasi-static value, as had to be expec-
ted. The quasi-static approximation underestimates the res-
onant wavelength, or, equivalently, overstimates the resonant
frequency, while in reality ωres should be getting smaller as a
increases. In terms of mechanical analogy one may say that
this is similar to how the natural frequency of a simple pendu-
lum becomes smaller when its length (size) increases.

4.4. Effective medium approximation for CGS NPs

Equation (40), after simple modification, can also be applied
to core–shell NPs with shells made of various binary compos-
ites. The dielectric function of such composites can often be
modeled using the Maxwell-Garnett (MG) effective medium
theory in which the host medium and the inclusion are charac-
terized by their respective bulk permittivities, εh and εi. Denot-
ing the volume fraction of the inclusion by η(r) and assuming
that 0≤ η(r)≪ 1, the effective permittivity of the composite
is given by [3, 13, 14]

ε= εh
1+ 2η εi−εh

εi+2εh

1− η εi−εh
εi+2εh

= εh

(
1+

3η (εi − εh)

εi + 2εh − η (εi − εh)

)

= εh

[
1+ 3η

εi − εh
εi + 2εh

+ 3η 2

(
εi − εh
εi + 2εh

)2

+ . . .

]
. (49)

In the context of equation (40), in linear order in η, one has

ε= εh(1+ 3ηEih), Eih ≡ (εi − εh)/(εi + 2εh), ε(0) = εh,

δε= 3εhEihη, (50)

so that

α

3V
=

(εc + 2εh)(εh − εm)+ fc(εc − εh)(2εh + εm)

(εc + 2εh)(εh + 2εm)+ 2fc(εc − εh)(εh − εm)

+
9εmεhEih(1− fc)

(
⟨η⟩(εc + 2εh)

2 + 2fc
⟨
a3a3cη
r 6

⟩
(εc − εh)

2
)

[(εc + 2εh)(εh + 2εm)+ 2fc(εc − εh)(εh − εm)]
2 ,

(51)

8
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Figure 5. The effect of particle size, a, on the Drude model approximation, equation (44), for a core–shell with same parameters as those
used to plot figure 4. Numerical simulations were performed with the help of STRATIFY Maxwell equations solver for MATLAB
developed in [19]. For each of the particle sizes, a/λp = 0.1,0.075,0.05, the corresponding linearly graded dielectric shell was modeled as
a stratified set of ten thin concentric shells with their respective dielectric constants, εj, j= 1,2,3, . . . ,10, ranging from ε= 2.5 to 2.55 and
varied in accordance with equation (42).

and

⟨η⟩ ≡ 1
Vshell

ˆ a

ac

η(r)4πr2dr,⟨a3a3cη
r6

⟩
≡ a3a3c
Vshell

ˆ a

ac

η(r)
r6

4πr2dr. (52)

4.5. Composition-graded NPs and effective medium
approximation

If a CGS NP is made entirely of a graded material (in which
case we call it composition-graded (CG) NP), then the second
order approximation can be recovered by taking the limit ac →
0 in equations (32) and (33), with the final result being,

α

3V
=

ε(0) − εm
ε(0) + 2εm

+
3εm⟨δε⟩(

ε(0) + 2εm
)2

−
εm

[
2
(
ε(0) − εm

)
⟨δε⟩2 +

(
ε(0) + 2εm

)
⟨(δε)2⟩

]
ε(0)

(
ε(0) + 2εm

)3 ,

(53)

where now,

⟨δε⟩ ≡ 1
V

ˆ a

0
δε(r)4πr2dr, ⟨(δε)2⟩ ≡ 1

V

ˆ a

0
(δε(r))2 4πr2dr,

(54)

are the averages over the entire volume of the sphere, V=
(4π/3)a3. Then, equation (53) can be used to investigate the
plasmonic properties of a CG spherical NP made entirely of a
binary composite. We call such particles binary CG spheres.
On the basis of the MG theory, equation (49),

ε(0) = εh, δε≈ 3εhEihη+ 3εhE 2
ihη

2,

(δε)2 ≈ 9ε2hE 2
ihη

2, Eih ≡ (εi − εh)/(εi + 2εh), (55)

where η = η(r) is the only quantity that is r-dependent. The
corresponding averages are,

⟨δε⟩ ≈ 3εhEih⟨η⟩+ 3εhE 2
ih⟨η 2⟩, ⟨δε⟩2 ≈ 9ε2hE 2

ih⟨η⟩2,
⟨(δε)2⟩ ≈ 9ε2hE 2

ih⟨η 2⟩, (56)

9
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Figure 6. Plot of relative sensitivity, Srel, as a function of the averaged inclusion fraction, ⟨η⟩, for a binary CG spherical NP immersed in
environmental media with various indices of refraction, nm, equation (63). Here, γ/ωp = 0.025, εi = 2.5.

with

⟨η⟩ ≡ 1
V

ˆ a

0
η(r)4πr2dr, ⟨η 2⟩ ≡ 1

V

ˆ a

0
η 2(r)4πr2dr.

(57)

Substituting (55) and (56) into equation (53) gives the expres-
sion for the binary CG sphere’s polarizability,

α

3V
=

εh − εm
εh + 2εm

+
9εmεhEih⟨η⟩
(εh + 2εm)

2 − 18εmεh (εh − εm)E 2
ih⟨η⟩2

(εh + 2εm)
3 ,

(58)

where the terms proportional to ⟨η 2⟩ canceled out.
Let us take a closer look at the polarizability in

equation (58) as a function of the averaged ⟨η⟩. In the con-
text of optical plasmonic sensors, one possible type of binary

composite of interest is a metal host with dielectric inclusion
[9]. We take the permittivity εi of the dielectric inclusion to
be frequency-independent over the frequency range relev-
ant to the problem at hand, and use the simple Drude model,
equation (44), for the metal host. For 0< γ/ωp ≪ 1, assuming
that ⟨η⟩ is sufficiently small, ⟨η⟩ ≃ (γ/ωp)

2 ≪ 1, to guarantee
convergence in equation (58) near the resonance, we find, in
linear order in ⟨η⟩, the inclusion-induced shift, δω0, in the
resonant frequency to be

δω0

ωp
≈ −3εm

(2εm + 1)3/2
2εm + εi
4εm − εi

⟨η⟩, (59)

where (compare with equation (45))

ω0

ωp
=

√
2− (2εm + 1)(γ/ωp)2 +

√
16− (2εm + 1)(4− (2εm + 1)(γ/ωp)2)(γ/ωp)2

12εm + 6
≈ 1√

2εm + 1

[
1− 2εm + 1

8

(
γ

ωp

)2
]
,

(60)

is the resonant frequency at ⟨η⟩= 0 (no inclusion, pure metal
sphere). Thus,

ωres

ωp
≈ 1√

2εm + 1

[
1− 2εm + 1

8

(
γ

ωp

)2

− 3εm
2εm + 1

2εm + εi
4εm − εi

⟨η⟩
]
.

(61)

Converting this expression to resonant wavelength via λ=
2πc/ω, and introducing the index of refraction of the sur-
rounding medium via εm = n2m, we get,

λres

λp
≈
√

2n2
m + 1

[
1+

2n2
m + 1
8

(
γ

ωp

)2

+
3n2

m

2n2
m + 1

2n2
m + εi

4n2
m − εi

⟨η⟩

]
.

(62)

We can then introduce the relative sensitivity with respect to
the changes in the environmental index of refraction as

Srel ≡
1
λres

dλres

dnm
=

2nm
2n2m + 1

+
nm
2

(
γ

ωp

)2

−
6nm

(
ε2i + 12εin4m + 4εin2m − 8n4m

)
(2n2m + 1)2 (4n2m − εi)

2 ⟨η⟩, (63)

which is a universal function for anyDrude host with dielectric
inclusion.

Equation (63) shows that Srel is a linear function of ⟨η⟩.
Figure 6 plots the Srel versus ⟨η⟩ for a binary CG sphere
immersed in various media with different nm. We see that

10
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Srel decreases with increasing ⟨η⟩. This prediction contradicts
experimental results observed in [9]. We believe that this dis-
crepancy may be due to the frequency dispersion of the dielec-
tric function of the dielectric inclusion which has not been
taken into account in our theoretical analysis.

5. Conclusion

In summary, we developed a physically motivated quasi-
static perturbation theory and used it to predict polarizabil-
ities and other plasmonic properties of various composition
graded NPs. In contrast to the case of a core–shell with a
uniform shell, the polarizability of a core–shell with a com-
position graded shell was found to be strongly dependent on
the functional form of the composition gradient. We showed
that the amplitude and the location of the LSPR peak can
be tuned by controlling the gradient configuration. The pro-
posed theory may aid in our understanding of the changes
in plasmonic properties of certain LSPR sensors with similar
kinds of composition gradients. It may also provide theoret-
ical guidance for designing various types of plasmonic struc-
tures whose plasmonic properties are needed to be fine tuned
for the desired applications. In principle, a similar perturbat-
ive approach can also be used in the non-quasi-static regime
(of, say, a Mie-type theory), however the details of the corres-
ponding mathematical calculations would likely become pro-
hibitively complicated.
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Appendix. Core-double-shell NP with
piece-wise-constant permittivity

Here, for the sake of completeness, we provide a straightfor-
ward derivation of polarizability in the quasi-static approxim-
ation of a core–shell NP with a double-layer shell, as depicted
in figure 7. For an alternative approach to this configuration
see, e.g. [21].

In this scenario, in each of the four regions, the quasi-static
axially-symmetric potential, ϕ(r,θ), satisfies the Laplace
equation, equation (1), together with a total of seven bound-
ary conditions: the six conditions at the three interfaces,

∂ϕk(ak,θ)
∂θ

− ∂ϕk+1(ak,θ)
∂θ

= 0,

εk
∂ϕk(ak,θ)

∂r
− εk+1

∂ϕk+1(ak,θ)
∂r

= 0, k= 1,2,3, (A1)

plus one condition at spatial infinity,

ϕ(r,θ)|r→∞ =−E0z=−E0rcosθ =−E0rP1(cosθ). (A2)

This tells us that our solution should depend on seven con-
stants, which motivates the following Ansatz,

ϕ1(r,θ) = ArP1(cosθ), 0< r< a1, (A3)

ϕ2(r,θ) =

(
Br+

C
r2

)
P1(cosθ), a1 < r< a2, (A4)

ϕ3(r,θ) =

(
Kr+

L
r2

)
P1(cosθ), a2 < r< a3, (A5)

ϕ4(r,θ) =

(
Fr+

G
r2

)
P1(cosθ), a3 < r<∞. (A6)

Condition (A2) then immediately gives, F=−E0, while con-
ditions (A1) result in the system of six linear equations for the
coefficients A, B, C, K, L, G,

Aa1 = Ba1 +
C

a21
, (A7)

ε1A= ε2

(
B− 2C

a31

)
, (A8)

Ba2 +
C

a22
= Ka2 +

L

a22
, (A9)

ε2

(
B− 2C

a32

)
= ε3

(
K− 2L

a32

)
, (A10)

Ka3 +
L

a23
= Fa3 +

G

a23
, (A11)

ε3

(
K− 2L

a33

)
= ε4

(
F− 2G

a33

)
. (A12)

When written in matrix form,
a31 −a31 −1 0 0 0 0
ε1a31 −ε2a31 2ε2 0 0 0 0
0 a32 1 −a32 −1 0 0
0 ε2a32 −2ε2 −ε3a32 2ε3 0 0
0 0 0 a33 1 −1 a33F
0 0 0 ε3a33 −2ε3 2ε4 ε4a33F

 ,

(A13)

the system can be solved either by hand using Gaussian elim-
ination or with the help of a symbolic algebra package. The
final result is,
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Figure 7. Schematic representation of a core-double-shell nanoparticle subjected to a uniform external field. Here permittivities, εc ≡ ε1, ε2,
ε3, εm ≡ ε4, are assumed to be constant (r-independent).

A

E0
=−

27a32a
3
3ε2ε3ε4

2(ε1 − ε2)
(
(2ε2 + ε3)(ε3 − ε4)a32 + a33 (ε2 − ε3)(ε3 + 2ε4)

)
a31 + a32 (ε1 + 2ε2)

(
2(ε2 − ε3)(ε3 − ε4)a32 + a33 (ε2 + 2ε3)(ε3 + 2ε4)

) ,
B

E0
=−

9a32a
3
3 (ε1 + 2ε2)ε3ε4

2(ε1 − ε2)
(
(2ε2 + ε3)(ε3 − ε4)a32 + a33 (ε2 − ε3)(ε3 + 2ε4)

)
a31 + a32 (ε1 + 2ε2)

(
2(ε2 − ε3)(ε3 − ε4)a32 + a33 (ε2 + 2ε3)(ε3 + 2ε4)

) ,
C

E0
=

9a31a
3
2a

3
3 (ε1 − ε2)ε3ε4

2(ε1 − ε2)
(
(2ε2 + ε3)(ε3 − ε4)a32 + a33 (ε2 − ε3)(ε3 + 2ε4)

)
a31 + a32 (ε1 + 2ε2)

(
2(ε2 − ε3)(ε3 − ε4)a32 + a33 (ε2 + 2ε3)(ε3 + 2ε4)

) ,
K

E0
=−

3a33
(
2(ε1 − ε2)(ε2 − ε3)a31 + a32 (ε1 + 2ε2)(ε2 + 2ε3)

)
ε4

2(ε1 − ε2)
(
(2ε2 + ε3)(ε3 − ε4)a32 + a33 (ε2 − ε3)(ε3 + 2ε4)

)
a31 + a32 (ε1 + 2ε2)

(
2(ε2 − ε3)(ε3 − ε4)a32 + a33 (ε2 + 2ε3)(ε3 + 2ε4)

) ,
L

E0
=

3a32a
3
3

(
(ε1 − ε2)(2ε2 + ε3)a31 + a32 (ε1 + 2ε2)(ε2 − ε3)

)
ε4

2(ε1 − ε2)
(
(2ε2 + ε3)(ε3 − ε4)a32 + a33 (ε2 − ε3)(ε3 + 2ε4)

)
a31 + a32 (ε1 + 2ε2)

(
2(ε2 − ε3)(ε3 − ε4)a32 + a33 (ε2 + 2ε3)(ε3 + 2ε4)

) ,
G

E0
=
a33

(
(ε1 − ε2)

(
(2ε2 + ε3)(2ε3 + ε4)a32 + 2a33 (ε2 − ε3)(ε3 − ε4)

)
a31 + a32 (ε1 + 2ε2)

(
(ε2 − ε3)(2ε3 + ε4)a32 + a33 (ε2 + 2ε3)(ε3 − ε4)

))
2(ε1 − ε2)

(
(2ε2 + ε3)(ε3 − ε4)a32 + a33 (ε2 − ε3)(ε3 + 2ε4)

)
a31 + a32 (ε1 + 2ε2)

(
2(ε2 − ε3)(ε3 − ε4)a32 + a33 (ε2 + 2ε3)(ε3 + 2ε4)

) ,

(A14)

with the corresponding polarizability being

α

4πa33
=

(ε1 + 2ε2) [(ε2 + 2ε3)(ε3 − ε4)+ f23 (ε2 − ε3)(2ε3 + ε4)]+ f12 (ε1 − ε2) [2(ε2 − ε3)(ε3 − ε4)+ f23 (2ε2 + ε3)(2ε3 + ε4)]

(ε1 + 2ε2) [(ε2 + 2ε3)(ε3 + 2ε4)+ 2f23 (ε2 − ε3)(ε3 − ε4)]+ 2f12 (ε1 − ε2) [(ε2 − ε3)(ε3 + 2ε4)+ f23 (2ε2 + ε3)(ε3 − ε4)]
,

(A15)
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where we introduced the two volume fractions,

f12 = a31/a
3
2, f23 = a32/a

3
3. (A16)

Notice that equation (A15) correctly reproduces the two
important cases:

Case 1: Core–shell (with a3 = a2, ε3 = ε2),

α

4πa32
=

(ε1 + 2ε2)(ε2 − ε4)+ f12 (ε1 − ε2)(2ε2 + ε4)

(ε1 + 2ε2)(ε2 + 2ε4)+ 2f12 (ε1 − ε2)(ε2 − ε4)
.

(A17)

Case 2: Uniform sphere (with a3 = a2 = a1,
ε3 = ε2 = ε1),

α

4πa31
=

ε1 − ε4
ε1 + 2ε4

. (A18)
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