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Working in the effective-mass approximation, we apply a powerful convergent perturbative technique of 
Turbiner’s to the calculation of the ground state energy and the wave function of an exciton confined 
to a three-dimensional parabolic quantum dot. Unlike the usual Rayleigh–Schrödinger perturbation 
theory, Turbiner’s approach works well even in the regime of strong coupling and does not require 
the knowledge of the full solution to the undisturbed problem. The second-order convergent calculation 
presented below is in excellent agreement with the results of exact numerical simulations for a wide 
range of system’s confinement parameters.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A quantum dot is a semiconductor nanocrystal consisting of 103 to 105 atoms and having a typical size of 2 to 10 nanometers [1]. The 
energy spectrum of a quantum dot is fundamentally different from that of a bulk semiconductor. A particle (such as an electron or a hole) 
in a nanocrystal behaves as if it was confined to a three-dimensional potential well, which makes particle’s energy levels discrete and 
strongly dependent on the dot’s size [2–4]. That leads to various quantum size effects which, in turn, give the dot its unique optoelectric 
properties [5,6].

Of particular interest to us is the influence of the confining potential on the ground state of an exciton [7,8] — an elementary excitation 
of the nanocrystal consisting of an electron and a hole interacting with each other by way of the usual electrostatic potential. Over the last 
thirty years, numerous approaches to the calculation of the ground state of the exciton have been employed by different authors. Chief 
among them are: the power series approach (also known as Frobenius method) [9–11], the standard Rayleigh–Schrödinger perturbation 
theory [12–14], the 1/N expansion [15,16], the expansion in electron-hole product states method [17], the variational method [18,14,
19,20], the spin-density-functional-theory approach [21], the analytical iteration method with trial wave function [22], various numerical 
matrix diagonalization techniques [23,24,14,20], and the use of the finite-element numerical solvers [25]. Here we propose yet another 
approach — a powerful convergent perturbative method due to Turbiner [26–28], which works well even in the regime of strong coupling 
and does not require the knowledge of the full solution to the undisturbed problem.

In the effective-mass model, the exciton in a quantum dot is described by the Hamiltonian [29,30],

Hexciton = − h̄2

2m∗
e
∇2

e − h̄2

2m∗
h

∇2
h − e2

ε|re − rh| + 1

2
m∗

eω
2r2

e + 1

2
m∗

hω
2r2

h , (1)

where m∗
e,h and re,h are the (effective) masses and positions of the electron and the hole, re,h ≡ |re,h|, e is the elementary charge, and 

ε is the dielectric constant of the ambient material. The last two terms in (1) represent the leading (harmonic) part of a more realistic 
confining potential. It is assumed that the frequency, ω, of small oscillations near the bottom of the well is independent of the particle’s 
mass, which is similar to the case of a particle oscillating at the bottom of a frictionless bowl under the action of uniform gravity, 
familiar from introductory mechanics. The name “parabolic” used to describe the quantum dot comes from the shape of this confining 
potential [30].
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Introducing the center-of-mass and the relative coordinates [30,31],

R = m∗
e re + m∗

hrh

m∗
e + m∗

h

, r = re − rh, (2)

we re-write system’s Hamiltonian as the sum,

Hexciton = HCOM + Hrelative, (3)

where

HCOM = − h̄2

2M
∇2

R + Mω2 R2

2
, (4)

Hrelative = − h̄2

2m
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r − e2

εr
+ mω2r2

2
, (5)

and

M = m∗
e + m∗

h, m = m∗
em∗

h

m∗
e + m∗

h

. (6)

The system’s dynamics, thus, separates into the center-of-mass motion of the exciton as a whole, which is described by HCOM, whose 
solution is trivial, and the motion of a fictitious particle of mass m described by Hrelative with potential

V = − e2

εr
+ mω2r2

2
. (7)

Upon using some suitable units of length, r0, and energy, E0 = h̄2/(2mr2
0), the potential and the Schrödinger’s equation for relative motion 

become

V = −2α

r
+ br2 (8)

and

∇2
r ψ + (E − V )ψ = 0, (9)

respectively, with dimensionless r, E , and constants

α ≡ me2

εh̄2
r0, b ≡ m2ω2

h̄2
r4

0. (10)

Our goal will be to find the ground state of Hrelative for any values of α and b.
[Notice that the possibility of having analytical solutions for some particular, denumerably infinite set of oscillator frequencies was 

first pointed out in Ref. [32]. The fact that those solutions are a reflection of the hidden sl(2) algebraic structure and, hence, the problem 
is quasi-exactly solvable and is equivalent to sl(2) quantum top in a magnetic field, was emphasized in Ref. [33]. It was then shown in 
Refs. [34–36] that the problem is, in fact, equivalent to the problem of two Coulomb charges on a plane subjected to a constant magnetic 
field orthogonal to that plane.]

2. Formal perturbative calculation

To determine the ground state of the exciton, we use the convergent perturbation theory developed by Turbiner [26–28]. Turbiner’s 
theory consists of two parts. The first part (used in this section) deals with the formal development of the perturbative scheme applicable 
to any potential, V , that can be split into a formal sum,

V = V 0 + λV 1, (11)

of its zeroth-order (unperturbed) component, V 0, and the perturbation, λV 1, where λ is the perturbation parameter. At this stage, no 
specific requirements are imposed on the perturbation other than that it has to be small in some reasonable sense. For example, in the 
case of a quantum dot, we may choose

r0 = εh̄2

me2
, α = 1, b = ω2h̄6ε4

m2e8
, (12)

and split the potential in (8) according to

V 0 = −2

r
, λV 1 = br2, (13)

which would correspond to the so-called weak-confinement regime [30], with b playing the role of the perturbation parameter. Alterna-
tively, we could choose

r0 =
√

h̄
, b = 1, α = e2 √

m
3
, (14)
mω ε ωh̄
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and

V 0 = r2, λV 1 = −2α

r
, (15)

and work in the strong-confinement regime [30], with small parameter α. Regardless of the V -split, the ground state wave function, ψ
(here assumed to be nodeless; for the possibility of having a nodal ground state see [37]), is sought in the form (here, e is the base of the 
natural logarithm)

ψ(r) = e−φ(r), (16)

with φ being a power series in λ,

φ = φ0 + λφ1 + λ2φ2 + . . . , (17)

and, similarly, for the ground state energy,

E = E0 + λE1 + λ2 E2 + . . . . (18)

The actual perturbative calculation is not applied to φ directly, however. Instead, Turbiner introduces an auxiliary vector field, y, defined 
by

y = −∇ψ/ψ = ∇φ, (19)

which satisfies the non-linear differential equation (hence the name “nonlinearization procedure” used in his papers),

∇ · y − y2 = E − V , (20)

with the boundary condition,

|ψ2y| → 0, r → ∞, (21)

which corresponds to the requirement that the probability current at infinity must vanish. The series expansion for y,

y = y0 + λy1 + λ2y2 + . . . , (22)

is then found using the iteration scheme,

∇ · yn − 2y0 · yn = En − Q n, n = 1,2,3, . . . , (23)

where

y0 = −∇ψ0

ψ0
, (24)

Q 1 = V 1, (25)

En =
∫

ψ2
0 Q n dV∫
ψ2

0 dV
, n = 1,2,3, . . . , (26)

Q n = −
n−1∑
i=1

yi · yn−i, n = 2,3, . . . , (27)

with dV being the volume element in the configuration space of the system. The remarkable feature of Turbiner’s method, which makes 
it very different from the usual perturbation theory, is that it does not require the complete solution (all wave functions and the full 
spectrum) of the undisturbed problem.

In the spherically-symmetric case, all yn have the form,

yn = yn(r)r̂, n = 0,1,2,3, . . . , (28)

with r̂ = r/r, and (23) reduces to a much simpler sequence of first order linear ordinary differential equations,

ry′
n = 2(y0r − 1)yn + r(En − Q n), n = 1,2,3, . . . , (29)

each of which has the general solution,

yn(r) = CneF (r) + eF (r)
∫

e−F (r)[En − Q n(r)]dr, (30)

with

F (r) =
∫

2(y0r − 1)

r
dr, (31)

where the constants Cn must be determined from the corresponding boundary conditions,

|ψ2
0 yn| → 0, r → ∞. (32)

Applying this scheme to the case of a weakly confined dot, Eq. (13), we first choose



A. Galiautdinov / Physics Letters A 382 (2018) 72–78 75
ψ0 = e−r, E0 = −1, (33)

and then find, upon direct calculation,

E = −1 + 3b − 129

8
b2 + 5451

16
b3 − 6609975

512
b4 + . . . , (34)

φ = r + br2

6
(3 + r) − b2r2

480
(1290 + 430 r + 105 r2 + 12 r3)

+ b3r2

6720
(381570 + 127190 r + 34545 r2 + 6804 r3 + 910 r4 + 60 r5) + . . . . (35)

Similarly, in the strongly confined case, Eq. (15), we set

ψ0 = e−r2/2, E0 = 3, (36)

and get

E = 3 − 4α√
π
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√
π

∞∫
0
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where

erf(x) = 2√
π

x∫
0

e−t2
dt ∼ 2e−x2

√
π

(
x + 2x3

1 · 3
+ 4x5

1 · 3 · 5
+ . . .

)
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erfc(x) = 1 − erf(x) ∼ e−x2

√
π

(
1

x
− 1

2x3
+ 3

4x5 − . . .

)
, x → ∞, (40)

are the error and complementary error functions.
The main problem with the formal perturbative scheme (be it the usual one, or the one described above) is evident from Eqs. (34), (35)

describing the weakly confined quantum dot. The resulting series for the ground state energy and for the exponent of the wave function 
are not actually convergent, but asymptotic. As with any asymptotic expansion, one has to exercise care when interpreting the calculated 
results. The asymptotic expansion, by its very nature, works best in the limit when perturbation approaches zero, in which case one may 
keep many terms in the series. However, when the perturbation increases, the expansion begins to break down and only a small number 
of terms may be kept, thus reducing the accuracy of the final result. One describes this situation formally by saying that the series has 
zero radius of convergence. This is very different from a series whose radius of convergence is different from zero: in that case, the more 
terms one keeps, the better the resulting approximation.

3. Convergent approach

The reason for the appearance of diverging series (34) and (35) in our calculation is that, for sufficiently large r, the perturbation 
potential, V 1 = br2, becomes larger than the unperturbed potential, V 0 = −2α/r. Because of that, V 1 cannot be regarded as a “good” 
perturbation acting on the unperturbed system.

To develop a perturbative scheme that is convergent (and works even for strong perturbations), Turbiner formulates the following 
prescription: choose V 0 in such a way that it reproduces as many of the characteristic properties of the full potential V as possible, such 
as, e.g., its singular points, asymptotic behavior, etc.

To see how this prescription works in the case of a quantum dot subjected to an arbitrary parabolic potential (8), we first choose

ψ0 = e−αr−√
br2/2 (41)

as the zeroth-order approximation to the ground state wave function. This is a very reasonable choice, for in both critical limits, r → 0 and 
r → ∞, the behavior of ψ0 matches the behavior of the ground state wave function of the corresponding dominating potential, −2α/r or 
br2, respectively. [Notice that (41) is similar in form to the “variational wavefunction” proposed in Ref. [19], though in that case α and 
b were treated as the variational parameters.] The corresponding zeroth order potential, V 0, and the ground state energy, E0, are then 
readily found by calculating the quantity

∇2ψ0

ψ0
=

(
−2α

r
+ br2 + 2α

√
br

)
−

(
−α2 + 3

√
b
)

, (42)

which, on the basis of the zeroth order Schrödinger equation, should be identified with the difference V 0 − E0. From (42), we immediately 
get

V 0 = −2α

r
+ br2 + 2α

√
br, (43)

E0 = −α2 + 3
√

b, (44)
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Fig. 1. (Color online.) Black curve: Graph of excitonic potential energy, V (r), Eq. (8), at α = 1 and b = 4. Gray dashed curves: the Coulomb and harmonic oscillator potentials 
comprising V . Green curve: zeroth-order potential, V 0, as given in Eq. (43). Blue curve: “good” perturbation, V 1 , as given in Eq. (45). Red curve: ground level, with energy 
Enum = 2.4474 (numerically calculated value). Second-order convergent perturbative calculation gives E = 2.4632; see below.

as well as the “good” perturbation (see Fig. 1),

λV 1 = −2α
√

br. (45)

The asymptotic behavior of the found V 0 correctly reproduces the behavior of the full potential V at its critical points, as required by 
Turbiner’s prescription. Additionally, the perturbation V 1 never dominates the zeroth-order V 0 for any value of r.

From here on, the calculation proceeds in accordance with the general scheme outlined in Section 2. Using (24), (25), (26), (27), and 
(30), we find
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r
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b
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and, upon setting
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√

παe
a2√

b

√
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b
)
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get
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b
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which vanishes at the origin and satisfies the boundary condition, (32), at infinity. We then get the first-order correction to the ground 
state energy,

E1 =
2α

[√
πα

(
2α2 + 3

√
b
)
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b erfc
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4√b

)
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b
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b
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)
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, (49)

the second-order correction,

E2 = −4α2b5/4[√
π

(
2α2 + √

b
)

e
α2√

b erfc
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α
4√b

)
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4
√
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e
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(
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√
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br
4
√

b

)
− 2
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]2

dr, (50)

and the exponent of the wave function in first order,
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Fig. 2. (Color online.) Ground state energy, E , of the exciton, Eq. (8), at α = 1 as a function of the parabolicity parameter, b. Green curve: plot of zeroth-order approximation, 
E ≈ E0, using Eq. (44). Blue curve: plot of the first-order approximation, E ≈ E0 + E1, using Eqs. (44) and (49). Black curve: plot of the second-order approximation, 
E ≈ E0 + E1 + E2, using Eqs. (44), (49), and (50). Red dots: exact numerical simulation. For example, at b = 4, we have E0 = 5, E1 = −2.42345, E2 = −0.113349, E = 2.4632, 
and Enum = 2.4474.

Fig. 3. (Color online.) Ground state wave function, ψ(r), of the exciton, Eq. (8), at α = 1 and b = 4. Green curve: plot of the zeroth-order approximation, ψ0, using Eq. (41). 
Blue curve: plot of the first-order approximation, ψ = e−φ(r) , with φ given in Eq. (51). Red dots: exact numerical simulation.

φ = αr +
√

b

2
r2 + −α

√
π

(
2α2 + √

b
)

e
α2√

b erfc
(
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with the corresponding results depicted in Figs. 2 and 3. As seen from those figures, Turbiner’s method works exceptionally well for a 
wide range of confinement parameters.

Notice that the found E1 coincides with the first-order correction to the ground state energy calculated on the basis of the usual 
perturbation theory,

E1 = 〈ψ0|V 1|ψ0〉
〈ψ0|ψ0〉 ≡

∫ ∞
0 V 1ψ

2
0 r2dr∫ ∞

0 ψ2
0 r2dr

. (52)

Notice also that the second-order correction,

E2 = −
∫ ∞

0 y2
1ψ

2
0 r2dr∫ ∞

0 ψ2
0 r2dr

, (53)

is always negative, as should have been expected. These two general properties of Turbiner’s scheme had already been pointed out in the 
original papers on the subject [26–28].

Additionally, for the purposes of engineering applications, given the value of the ground-state energy, Egiven, one may want to calculate 
the required value of the confinement parameter, breq. This can be easily achieved with the help of the Nelder–Mead [38] simplex direct 
search applied to the approximate equation,

Egiven ≈ E0 + E1 + E2, (54)
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with E0, E1, and E2 given in Eqs. (44), (49), and (50). For example, for α = 1 and Egiven = 0, we find breq ≈ 0.6370, with the actual value 
being b ≈ 0.6507.

4. Summary

Assuming the effective mass model, we performed a convergent perturbative calculation of the ground state of the exciton confined 
by the parabolic potential of a three-dimensional quantum dot. No use of the full solution of the unperturbed problem has been made, 
except for the easily determined expressions for the unperturbed ground state energy and the wave function. For a wide range of system’s 
parameters, our approximate solution is in very good agreement with the results of exact numerical simulations.
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