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Abstract This work relates to the famous experiments, performed in 1975 and 1979 by
Werner et al., measuring neutron interference and neutron Sagnac effects in the earth’s
gravitational field. Employing the method of Stodolsky in its weak field approximation,
explicit expressions are derived for the two phase shifts, which turn out to be in
agreement with the experiments and with the previously obtained expressions derived
from semi-classical arguments: these expressions are simply modified by relativistic
correction factors.
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1 Introduction

It is now several decades since the ground-breaking work by Werner and his co-workers
showed that gravitational [1,2] and rotational [3] effects were to be found in neutron
interference experiments performed on the earth’s surface [4–6]. The predicted and
experimentally confirmed gravitational phase shift is the only expression in physics
to feature both Newton’s constant of gravitation G and Planck’s quantum of action h̄,
which surely makes these experiments particularly noteworthy. The two experiments
are referred to hereafter as the COW experiment and the neutron Sagnac effect.

Straightforward, semi-classical derivations of these effects have already appeared
in the literature (see for example [7–9]) and in abbreviated form are summarized in
Sects. 2 and 3 below. What is very clear, however, is that a proper account of this topic
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should really be sought in General Relativity (GR)—which is, after all, a theory of
gravity!—and indeed numerous papers have been written using this approach (see for
example [10–15]). Some of these explore rather sophisticated notions, for example a
possible parallel between the COW experiment and the Aharonov–Bohm effect, based
on the integrated curvature of an enclosed path, on the one hand in parameter space
and on the other hand in field space [14]. We do not aim to explore these higher-flown
topics, but rather to present a simple demonstration of how GR can account for the
findings in neutron interferometry and to show that it has an application in quantum
physics [16]—a notion which might still cause some surprise!

We use the Kerr solution of GR [17,18], since this includes the rotation of the earth
through the angular momentum parameter a, as well as ω, the angular velocity of the
earth, and rs its Schwarzschild radius. These are all small parameters, and we calculate
the relevant effects to second order in all these quantities (mixed and unmixed). The
general method of procedure is the weak field approximation, adopted by Stodolsky
[11] (also Linet and Tourrenc [10]), together with the use of the geodesic equation, or
the eikonal method of geometrical optics.

The next Section describes a standard, elementary derivation of the COW effect,
and in Sect. 3 is a similarly elementary derivation of the Sagnac effect for neutrons.
In Sect. 4 the general relativistic setting for more realistic derivations of these effects
is presented. The Kerr metric is displayed as well as a coordinate transformation
to a Cartesian system relevant to our problem. In the final Section our results are
derived. Use is made of the weak field approximation in conjunction with a specific
assumption which allows the calculations to be preformed. It is found that the resulting
phase shifts are, in both cases, those predicted by the simple models in Sects. 2 and 3,
with correction factors of γ = (1 − v2/c2)−1/2, and additional small terms involving
ω, the angular velocity of the earth.

2 Simple derivation of COW effect

The setup described in reference [2] (see also [9]) is based on the splitting of the neu-
tron beam by Bragg diffraction from perfect crystals, as first implemented for X rays
by Bonse and Hart [19]. Rauch and Werner [9] point out that when the desired degree
of crystal cutting is achieved, the resulting interferometry “exhibits the fundamentals
of quantum mechanics in a very direct and obvious way”. The interference involved is
“topologically equivalent to a ring”, which we represent as a rectangle, of macroscopic
dimensions (centimetres). The neutrons enter at the bottom left corner where the beam
splits into two, and the beams recombine at the top right corner, where the interference
takes place.

The spatial part of a plane matter wave describing a neutron beam is given by eik·r,
where k is the wave vector and k ≡ |k| = 2π/λ is the wave number, with λ being the
de Broglie wavelength, so the phase accumulated over a path from r0 to r is

Φ(r) =
∫ r

r0

k · dr, (1)

or, since λ/(2π) = h̄/p, where p is particle’s momentum,
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Φ(r) = 1

h̄

∫ r

r0

p · dr. (2)

This refers to a particular path, so the phase difference between neutron beams along
two distinct paths is

ΔΦ = 1

h̄

∫ r

r0

(pI − pII) · dr. (3)

In our case the path I is the lower route and path II the upper route. The contributions
to ΔΦ from the vertical parts of these two routes cancel, since the relevant momenta
are equal and opposite; and putting pI = mv and pII = mu along the horizontal lower
and upper routes respectively (with v and u being the corresponding particle speeds),
we find

ΔΦ = 1

h̄
m(v − u)L , (4)

where L is the length of the interferometer. Conservation of energy now gives us

1

2
mu2 = 1

2
mv2 − mgH (5)

where g is the acceleration due to gravity and H the height of the interferometer. Since
gH is of the order of 10−1 m2s−2 and v2 ≈ 4 × 106 m2s−2 for thermal neutrons, then
gH � v2, and

v − u ≈ gH

v
, (6)

giving finally

ΔΦ = mgA

h̄v
, (7)

where A = LH is the area of the interferometer. This phase shift was first predicted
and observed in 1975 by Colella, Overhauser and Werner [2].

It is pertinent to note that the above expression for the phase shift may alternatively
be obtained by starting from a Lagrangian L given by

L = p2

2m
+ mg · r, (8)

with p (= mv = mṙ) defined by

p = ∂L
∂ ṙ

. (9)

Equation (5) then yields the expected result (7).

3 Simple derivation of the neutron Sagnac effect

The experiment, first performed by Werner, Staudenmann and Colella [3], measured
the effect of the earth’s rotation on the neutron phase. To take account of a rotating
frame the Lagrangian (8) should be modified to
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L = p2

2m
+ mg · r + ω · �, (10)

where ω is the Earth’s angular velocity, with magnitude ω ≡ |ω|, and � is the angular
momentum of the particle. Then the momentum (9) becomes

p = mv + mω×r. (11)

The phase coming from the term in ω is

Δα = 1

h̄

∮
m[ω × r] · dr = 2mω · A

h̄
, (12)

where A is the vector orthogonal to the area enclosed by the path followed by the
particle, with magnitude A ≡ |A|. This Sagnac phase is typically of the order of 10−2

of the gravitational COW phase, so to detect it means setting up the apparatus in such
a way that the COW contribution to the phase is zero. This is achieved by having
the interferometer in a vertical plane—say in the rθ or rφ plane—and then rotating
it about a vertical axis. The observations of the phase shift of the neutron due to the
earth’s rotation were found to be in good agreement with the theory [3].

4 Kerr metric and the Earth’s gravitational field

We now turn to a general relativistic derivation of the COW and neutron Sagnac effects.
To describe the gravitational field of the rotating earth, we first write down the Kerr
metric [17] in its standard Boyer–Lindquist form [18],

ds2 =
(

1 − rs
r

1

1 + ( a
r

)2 cos2 θ

)
c2dt2 + 2

rs
r

a

r

sin2 θ

1 + ( a
r

)2 cos2 θ
r(cdt)dϕ

− 1 + ( a
r

)2 cos2 θ

1 − rs
r + ( a

r

)2 dr2 −
(

1 +
(a
r

)2
cos2 θ

)
r2dθ2

−
(

1 +
(a
r

)2 + rs
r

(a
r

)2 sin2 θ

1 + ( a
r

)2 cos2 θ

)
r2 sin2 θdϕ2, (13)

where a = (2/5)R2ω/c is the angular momentum parameter, rs = 2GM/c2 is the
Schwarzschild radius, M is the mass, and R is the radius of the earth. This metric
describes the gravitational field of the rotating earth as seen from an inertial frame.
The experiments we are considering, however, take place on the earth’s surface, and
therefore in a rotating frame, so to find the appropriate metric we must replace ϕ by
ϕ′ given by

ϕ = ϕ′ + ωt, (14)

in which the metric becomes
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ds2 =
{

1 − rs
r

1

1 + ( a
r

)2 cos2 θ
+ 2

rs
r

a

r

rω

c

sin2 θ

1 + ( a
r

)2 cos2 θ

− r2ω2

c2

[
1 +

(a
r

)2 + rs
r

(a
r

)2 sin2 θ

1 + ( a
r

)2 cos2 θ

]
sin2 θ

}
c2dt2

+ 2

{
rs
r

a

r

sin2 θ

1 + ( a
r

)2 cos2 θ

− rω

c

[
1 +

(
a

r

)2

+ rs
r

(
a

r

)2 sin2 θ

1 + ( a
r

)2 cos2 θ

]
sin2 θ

}
r(cdt)dϕ′

− 1 + ( a
r

)2 cos2 θ

1 − rs
r + ( a

r

)2 dr2 −
[

1 +
(a
r

)2
cos2 θ

]
r2dθ2

−
[

1 +
(a
r

)2 + rs
r

(a
r

)2 sin2 θ

1 + ( a
r

)2 cos2 θ

]
r2 sin2 θdϕ′2. (15)

This expression is exact. Taking into account that for r ≈ R (radius of the earth),
rs/r ∼ 10−9, ωr/c ∼ 10−6, a/r ∼ 10−6, aω/c ∼ 10−12, we expand to order 10−15

and get

ds2 =
(

1 − rs
r

− r2ω2

c2 sin2 θ

)
c2dt2

+ 2
(rs
r

a

r
− rω

c

)
r sin2 θdϕ′(cdt)

−
[

1 + rs
r

−
(a
r

)2
sin2 θ

]
dr2

−
[

1 +
(a
r

)2
cos2 θ

]
r2dθ2 −

[
1 +

(a
r

)2
]
r2 sin2 θdϕ′2. (16)

It is convenient to rewrite (16) in terms of the “shifted” Cartesian coordinates erected
on the surface of the earth, by analogy with how it was done in the Schwarzschild
case in Ref. [20]. The idea is to work in a coordinate system whose origin is “in the
laboratory”, on the earth’s surface, and also that this should be a Cartesian system,
since this simplifies the calculation.

We first introduce the “usual” Cartesian coordinates (x, y, z) defined by

r =
(
x2 + y2 + z2

)1/2
, ϕ′ = arctan

y

x
, θ = arccos

z

r
, (17)

and get

ds2 =
[

1 − rs
r

− ω2

c2 (x2 + y2)

]
c2dt2

+ 2
(rs
r

a

r
− rω

c

) xdy − ydx

r
(cdt)
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Fig. 1 (Color online) Local
Cartesian coordinates on the
surface of the rotating Earth

−
[

1 + rs
r

−
(a
r

)2 x2 + y2

r2

]
(xdx + ydy + zdz)2

r2

−
[

1 +
(a
r

)2 z2

r2

] (
zxdx + zydy − (x2 + y2)dz

)2

r2(x2 + y2)

−
[

1 +
(a
r

)2
]

(xdy − ydx)2

x2 + y2 . (18)

We next perform the rotation around the y-axis by an angle θ0 (the co-latitude of
interferometer location on the earth’s surface; see Fig. 1) and shift the origin by R
along the new z-axis in accordance with

x = x ′ cos θ0 + (R + z′) sin θ0, (19)

y = y′, (20)

z = −x ′ sin θ0 + (R + z′) cos θ0, (21)

and

dx = dx ′ cos θ0 + dz′ sin θ0, (22)

dy = dy′, (23)

dz = −dx ′ sin θ0 + dz′ cos θ0, (24)

where x ′, y′ and z′ are the Cartesian coordinates whose origin is on the earth’s surface.
We now restrict the experimental region to the neighborhood of this shifted origin and
introduce the weak field approximation, in which gμν = ημν + hμν and |hμν | � 1,
with ημν = diag(1,−1,−1,−1). We finally obtain, to terms linear in x ′/R, y′/R and
z′/R,
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h00 = − rs
R

(
1 − z′

R

)
− ω2R2

c2

[(
1 + 2z′

R

)
sin2 θ0 + x ′

R
sin (2θ0)

]
, (25)

h01 =
(

ωR

c
− ars

R2

)
y′

R
cos θ0, (26)

h02 = − ωR

c

[(
1 + z′

R

)
sin θ0 + x ′

R
cos θ0

]

+ ars
R2

[(
1 − 2z′

R

)
sin θ0 + x ′

R
cos θ0

]
, (27)

h03 =
(

ω R

c
− ars

R2

)
y′

R
sin θ0, (28)

h11 = − a2

R2

[(
1 − 2z′

R

)
cos2 θ0 − x ′

R
sin (2θ0)

]
, (29)

h12 = 1

2

a2

R2

y′

R
sin (2θ0) , (30)

h13 = −
(
rs
R

− a2

R2

)
x ′

R
, (31)

h22 = − a2

R2

(
1 − 2z′

R

)
, (32)

h23 = −
(
rs
R

− a2

R2 (1 + sin2 θ0)

)
y′

R
, (33)

h33 = − rs
R

(
1 − z′

R

)
+ a2

R2

[(
1 − 2z′

R

)
sin2 θ0 + x ′

R
sin (2θ0)

]
. (34)

5 Relativistic derivation of the COW and Sagnac effects

We are now in a position to give a relativistic account of the COW and neutron Sagnac
effects. To do so, we need a relativistic expression for the phase shift, which comes from
the Feynman–Dirac formula exp (i S/h̄), the amplitude for a particle to travel along a
path, with S = ∫ L dt being the action along the path. The relativistic expression for
S is −mc

∫
ds, with ds2 = gμνdxμdxν = c2dτ 2, τ being proper time. Dividing the

expression for ds2 by ds gives

ds = gμν

dxμ

ds
dxν = 1

c
gμν

dxμ

dτ
dxν, (35)

so

S = −m
∫

gμν

dxμ

dτ
dxν = −

∫
gμν p

μdxν = −
∫

pμdx
μ, (36)

consistent with Eq. (2) above.
We may now proceed, following Refs. [10,11], by stating that the phase ΦAB

accumulated by a particle moving from spacetime event A to event B is, invoking the

123



 82 Page 8 of 11 A. Galiautdinov, L. H. Ryder

weak field approximation,

ΦAB = −mc

h̄

∫ B

A
ds ≈ −2π

λC

∫ B

A

(
dsM + 1

2
hμν

dxμ

dsM
dxν

)
, (37)

where hμν is the deviation of the metric gμν from its Minkowskian form ημν =
diag(1,−1,−1,−1), with ds2

M = ηρσdxρdxσ , and λC/(2π) = h̄/(mc), with λC
being neutron’s Compton wavelength. Eq. (37) represents the action, normalized to
Planck’s constant, of a freely falling gravitational probe. We assume, as an additional
hypothesis, that (37) can also be applied to a probe whose worldline is shaped by, say, a
collection of ideally reflecting mirrors that are at rest relative to the chosen coordinate
system. (A mirror is regarded as ideal if on reflection there is no change of particle’s
energy and of the tangential component of its momentum, while the normal component
of the momentum changes sign.) A similar assumption for calculating gravitational
effects, though in a different context, was made in Ref. [21]. The gravitationally
induced phase is then given by

ΦAB = − π

λC

∫ B

A
hμνu

μ

Mdxν, (38)

where uμ

M = dxμ/dsM = (γ, γ v/c) is the usual relativistic four-velocity of the
particle, v is its three-velocity, and γ is the corresponding gamma-factor. The phase
difference between the two interfering paths is then

ΔΦ = − π

λC

∮
hμνu

μ

Mdxν, (39)

where the line integral is taken around the loop formed by the paths.
We now make an important observation that, in the linearized approximation, ∼

O(hμν), used in Eq. (38), neutron’s speed, v ≡ |v|, should be treated as constant. Any
change in the speed acquired due to gravity, etc., had already been taken into account
when we made the linearized approximation (38). Thus, the gravitationally induced
phase difference between the interfering paths may be found from the formula

ΔΦ = −πγ c

λC

∮ [(
h00 + hi0vi

c

)
dt +

(
h0 j + hi jvi

c

)
dx j

c

]
, (40)

where v =
√

δi jviv j is regarded as constant.
Equation (40) represents the accumulated phase difference for a single orientation

of the loop. This phase difference, which we call intrinsic, is not directly observable.
In an actual experiment, at least two orientations are involved, and it is the shift in the
intrinsic phase difference during the rotation of the loop from one position to the other
that is experimentally measurable.

Assuming that the loop is a rectangle placed in the x ′y′-plane, with the sides parallel
to the x ′ and y′ axes, we have z′ = 0 and v = (vx , vy, 0), and upon using (40), find
the corresponding intrinsic phase difference,
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(ΔΦ)x ′ y′ = − πγ c

λC

{∫ (Δx ′,0,0)

(0,0,0)
−

∫ (Δx ′,Δy′,0)

(0,Δy′,0)

} [(
h00 + h10v

c

)
dt +

(
h01 + h11v

c

)
dx ′
c

]

− πγ c

λC

{∫ (Δx ′,Δy′,0)

(Δx ′,0,0)
−

∫ (0,Δy′,0)

(0,0,0)

} [(
h00 + h20v

c

)
dt +

(
h02 + h22v

c

)
dy′
c

]

= − πγ c

λC

{∫ (Δx ′,0,0)

(0,0,0)
−

∫ (Δx ′,Δy′,0)

(0,Δy′,0)

} (
h00

v
+ 2h10

c
+ h11v

c2

)
dx ′

− πγ c

λC

{∫ (Δx ′,Δy′,0)

(Δx ′,0,0)
−

∫ (0,Δy′,0)

(0,0,0)

} (
h00

v
+ 2h20

c
+ h22v

c2

)
dy′

= + πγ c

λCv

{
4v

c

(
ωR

c
− ars

R2

)
cos θ0 + ω2R2

c2 sin (2θ0)

}
Δx ′Δy′

R
, (41)

which vanishes in the a, ω → 0 limit, as had to be expected. In a similar manner, for
the z′x ′ and y′z′ orientations, we get

(ΔΦ)z′x ′ = πγ c

λCv

[
rs
R

− ω2R2

c2

(
2 sin2 θ0 − sin (2θ0)

)

+ v2

c2

a2

R2

(
2 cos2 θ0 − sin (2θ0)

)]
Δz′Δx ′

R
, (42)

(ΔΦ)y′z′ = πγ c

λCv

[
rs
R

− 2ω2R2

c2 sin2 θ0 − 2v

c

(
2ωR

c
+ ars

R2

)
sin θ0

+ v2

c2

2a2

R2

]
Δy′Δz′

R
. (43)

Combining Eqs. (41) and (42), and assuming that the loop is now rotated around the
x ′-axis from horizontal x ′y′ to vertical z′x ′ position, we get, using Δx ′ ≡ L and
Δy′ = Δz′ ≡ H , the experimentally observable COW change of phase,

(ΔΦ)COW ≡ (ΔΦ)z′x ′ − (ΔΦ)x ′y′

= πγ c

λCv

LH

R

{
rs
R

− 4v

c

(
ωR

c
− ars

R2

)
cos θ0 − 2ω2R2

c2 sin2 θ0

+ v2

c2

a2

R2

(
2 cos2 θ0 − sin (2θ0)

)}

= γ
mgA

h̄v
+ (terms in ω and ω2), (44)

where we have made the identification

rs
R2 ≡ 2g

c2 , (45)

with g being the acceleration due to gravity at the earth’s surface. It therefore turns out
that in this relativistic formulation the COW phase shift is merely the simple result (7),
corrected by the factor γ , and beyond that, further corrected (slightly surprisingly!)
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by terms resulting from the rotation of the earth. These terms are two or more orders
of magnitude smaller than the first terms in (44): rs/R = 1.4 × 10−9, 4vωR/c2 =
4.7 × 10−11, ωR/c = 1.6 × 10−6, ars/R2 = 0.9 × 10−15, where we have taken
v = 2.2 × 103 m/s for thermal neutrons.

On the other hand, combining Eqs. (42) and (43), and assuming that the loop is
rotated around the z′-axis from vertical z′x ′ to vertical y′z′ position, we get, using
Δx ′ = Δy′ ≡ L and Δz′ ≡ H , the phase shift

(ΔΦ)Sagnac ≡ (Δα)y′z′ − (Δα)z′x ′

= + πγ c

λCv

LH

R

{
−2v

c

(
2ωR

c
+ ars

R2

)
sin θ0 − ω2R2

c2 sin (2θ0)

+ v2

c2

a2

R2

(
2 sin2 θ0 + sin (2θ0)

)}

= − γ
2mωA

h̄
+ (terms in a, a2, ω2). (46)

We see, similarly to the COW case, that the magnitude of the Sagnac effect is the same
as obtained in the simple derivation, corrected by γ , and modified by considerably
smaller terms.

6 Summary

We conclude that by making the weak field approximation we may straightforwardly
derive expressions for the COW and neutron Sagnac phase shifts. Our general rel-
ativistic calculation yields the same results as simple semi-classical arguments do,
corrected only by the relativistic factor γ , and by higher order terms involving the
angular velocity of the earth.
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